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Abstract—In GPS-denied scenarios, a robust environmental
perception and localization system becomes crucial for au-
tonomous driving. In this paper, a LiDAR-based online localiza-
tion system is developed, incorporating road marking detection
and registration on a high-definition (HD) map. Within our
system, a road marking detection approach is proposed with real-
time performance, in which an adaptive segmentation technique
is first introduced to isolate high-reflectance points correlated
with road markings, enhancing real-time efficiency. Then, a
spatio-temporal probabilistic local map is formed by aggregating
historical LiDAR scans, providing a dense point cloud. Finally,
a LiDAR bird’s-eye view (LiBEV) image is generated, and an
instance segmentation network is applied to accurately label
the road markings. For road marking registration, a semantic
generalized iterative closest point (SG-ICP) algorithm is designed.
Linear road markings are modeled as 1-manifolds embedded
in 2D space, mitigating the influence of constraints along the
linear direction, addressing the under-constrained problem and
achieving a higher localization accuracy on HD maps than ICP.
Extensive experiments are conducted in real-world scenarios,
demonstrating the effectiveness and robustness of our system.

Index Terms—Localization, autonomous vehicles, road mark-
ings, LIDAR, HD map.

I. INTRODUCTION

CCURATE localization is a prerequisite for autonomous
driving. In unsheltered open-air environments, the global
positioning system (GPS) is the predominant technology for
accurate localization. However, the GPS-provided poses be-
come unstable when satellite signals are obstructed by ceilings
or viaducts. Therefore, localization through environmental per-
ception using observation sensors, such as cameras and light
detection and ranging (LiDAR) sensors, becomes necessary for
autonomous vehicles, especially in GPS-denied environments.
In autonomous vehicle navigation, the detection of road
markings stands out as the most widely employed technique
for achieving precise and stable environmental perception.
Subsequently, the detected road markings can be associated
with semantic elements in high-definition (HD) maps to esti-
mate the vehicle’s pose. Cameras have been widely used for
road marking detection [1]-[4], because camera images con-
tain rich texture information of environments. However, cam-
eras are limited by the susceptibility of illumination variations
and distortions in bird’s-eye view (BEV) lane representation,
rendering them less robust for certain applications. [5], [6].
In contrast, LiDAR sensors exhibit reduced sensitivity to
varying illumination conditions and provide a precise 3D
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Fig. 1: (a) The HD map localization of our approach is visualized,
where the trajectory of vehicle localization is marked in green, and
the current pose of the vehicle is represented by a red cube. The
blue point cloud represents ground points from a single-frame LiDAR
data. These ground points are adaptively segmented to identify highly
reflective points. Subsequently, they are aggregated by successive
frames of data to form a denser point cloud. Finally, semantic
segmentation is applied to obtain a semantic point cloud, which is
then registered with the HD map to estimate the vehicle’s pose.
(b) Road markings extracted using our approach are visualized,
encompassing dashed lanes, solid lanes, stop lines, texts, arrows,
diamond signs, triangle signs, curbs, and crosswalks.

representation of the environment. Meanwhile, road markings
can be extracted from road surfaces using LiDAR point
clouds, leveraging the characteristic of their high reflectance
from the retro-reflective materials [7], [8]. However, these
LiDAR-based methods face challenges to balance the need for
denser point cloud with the essential requirement for real-time
performance.

To address the challenges, a real-time LiDAR-based ap-
proach is proposed for road marking detection and registration
with HD maps, as visualized in Fig. 1 (a). For road marking
detection, an adaptive segmentation technique is first employed
to efficiently isolate points correlated with road markings.
Then, a spatio-temporal probabilistic local map is established
by aggregating segmented points from historical scans, result-
ing in a dense point cloud representation of road markings.
Finally, a LiDAR bird’s-eye view (LiBEV) image is generated
by partitioning the local map into grid cells, and a proficiently
trained instance segmentation network (CenterMask [9] is
selected in our implementation) is applied to accurately detect
9 different types of road markings, as shown in Fig. 1 (b).

As for the road marking registration, a semantic general-
ized iterative closest point (SG-ICP) algorithm is specifically



designed to robustly align the detected road markings with
the HD map by leveraging both their semantic and geometric
attributes. In the proposed SG-ICP registration, the linear types
of road markings are modeled as 1-manifolds embedded in the
2D space, making the constraints along the linear direction
have minimal influence on the ultimate solution.

The contributions of this paper are summarized as follows.

1) A LiDAR-based road marking detection approach is
proposed for online environmental perception, in which
point density and real-time performance are balanced
by adaptively segmenting high-reflectance points and
updating spatio-temporal probabilistic local map. Finally,
a LiBEV image is generated, and 9 different types of road
markings can be detected accurately using an instance
segmentation network on the LiBEV image.

2) A novel road marking registration algorithm is proposed
for localization of autonomous vehicles on HD maps,
in which linear road markings are represented as 1-
manifolds embedded in 2D space. This representation can
provide a robust and accurate solution for the registration
problem with minimal influence on the under-constrained
dimensions. Compared with the widely-used ICP, SG-ICP
achieves higher accuracy of localization.

3) Comprehensive experiments are conducted in real-world
scenarios, demonstrating real-time performance and lo-
calization accuracy of our system. Furthermore, exper-
imental results indicate the approach’s adaptability to
various types of LiDAR sensors, as well as its robustness
under different vehicle speeds and weather conditions.

II. RELATED WORK

In urban autonomous driving scenarios, the detection of road
markings stands out as a crucial method for environmental
perception. The road markings, typically painted on asphalt
roads using retro-reflective materials, play a vital role in
guiding autonomous vehicles. Leveraging the near-infrared
wavelength of laser pulses, road markings exhibit higher re-
flectance compared to unpainted road surfaces [7]. As a result,
the LiDAR sensor’s ability to capture intensity measurements
becomes instrumental in detecting these road markings [8].

LiDAR-based road marking detection is extensively applied
in the generation of HD maps [10]-[15]. Since the data for
HD map generation is processed offline, consecutive scans
are aggregated into a point cloud with a significantly high
density of points, capturing detailed information about the
surroundings [10]. However, processing such high-density
points is time-consuming, rendering existing methods applied
in HD map generation impractical for the online environmental
perception and localization.

In existing studies focused on real-time perception, the de-
tection of road markings is achieved by thresholding the mea-
sured intensities within a single LiDAR scan. A lane markings
detection approach was developed by Team AnnieWAY for the
DARPA Urban Challenge 2007, which detected the painted
lane markings from the single scans by thresholding the points
with high-reflectance gradients [16]. Similarly, the approach
proposed in [17] detected highly reflective lane markings by

employing a polar lane detector grid. In [18], a modified
Otsu thresholding technique was employed to segment high-
reflectance points obtained from a multilayer LiDAR into
distinct categories, such as asphalt and road markings. Due
to the sparsity of LIDAR measurements, the single-scan-based
approaches face challenges detecting complete road markings,
making the detection results susceptible to noise and lack
robustness.

The approach proposed in [19] accumulated two consecutive
frames of segmented road points, and then applied a fixed
intensity threshold to isolate lane marking points. In the
subsequent works [20], [21], the approach was extended to
detect various types of high-reflectance landmarks, such as
road signs and guard rail reflectors, to improve the localization
accuracy. However, these multi-scan-based methods utilize
a fixed intensity threshold to segment road marking points,
which is sensitive to changes in environmental conditions and
sensor types.

Recently, the deep learning approaches have been widely-
used in the road marking detection tasks. The global fea-
ture correlation (LLDN-GFC) was introduced in [22] which
leveraged the spatial characteristics of lane lines within the
point cloud including sparsity, thinness, and elongation across
the entirety of the ground points. This method was further
improved in [23], resulting in a substantial reduction in com-
putational cost. Nevertheless, LLDN-GFC focuses solely on
extracting lane lines, overlooking other types of road markings.
This limitation implies that the extracted lane lines can only
provide lateral constraints on the vehicle’s poses, potentially
contributing to a degeneracy problem during the localization.

III. METHODOLOGY

In response to the limitations identified in previous re-
searches, we propose a LiDAR-based road marking detection
system for real-time environmental perception. Additionally,
a novel road marking registration algorithm is introduced to
enhance the localization accuracy of autonomous vehicles with
HD maps. The flowchart of the proposed system is illustrated
in Fig. 2.

A. LiDAR-based Real-Time Road Marking Detection

Limited by the sparse distribution of LiDAR points, the sta-
ble and robust detection of road markings proves challenging
when relying solely on individual frame of data. To overcome
this limitation, successive LiDAR scans are aggregated into
a local map, generating a denser point cloud that is con-
ducive to effective road marking detection. In consideration
of online requirements and high-reflectance road markings, the
aggregation process can selectively extract points with higher
intensities from the ground plane. This approach ensures
the construction of a local map optimized for road marking
detection, striking a balance between computational efficiency
and information richness.

1) High-Reflectance Point Segmentation: This procedure
aims to adaptively identify points with high reflectance, which
are often correlated with road markings painted using retro-
reflective materials. To ensure adaptability across diverse sen-
sors and scenarios, we introduce an adaptive segmentation
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Fig. 2: The flowchart of the proposed approach.

approach designed to isolate high-reflectance points. This
enhancement contributes to a more robust system overall.

For the efficiency of the system, only ground points are
considered, which are extracted from the LiDAR scan utilizing
the methodology detailed in [24]. This approach segments
ground points based on height information and subsequently
extracts them by partially fitting the ground plane. Then, a
segmentation coefficient pj, is introduced to distinguish high-
reflectance points from the ground points in the k-th scan.
Specifically, points with intensities below p; are excluded
from the scan. Notably, the segmentation coefficient pj is not
predetermined manually. Instead, it is dynamically estimated
and continuously updated using a Kalman filter. The state of
the Kalman filter is evolved according to the state-transition
model

(D

where wy ~ N(0, Qy) is the process noise. The measurement
model is given by

Pk = Pr—1 + Wk,

2

where the vy, ~ N(0, Ry) is the measurement noise. In each
LiDAR scan, the mean puy and variance oy, of the intensities
of the ground points are calculated. The measurement for the
innovation computation is then determined as z, = u + 20%.

2k = Pk + Vg,

This adaptive approach relies on two assumptions. Firstly, it
presumes that nearby consecutive roads should possess similar
segmentation coefficients owing to the consistency in ground
materials. Secondly, it assumes that the majority of LiDAR
points lie on the common asphalt surface, while road mark-
ing points exhibit statistically higher intensities. These two
assumptions are satisfied in most urban road environments,
ensuring the effectiveness of the approach. Furthermore, seg-
menting these high-reflectance points is pivotal for optimizing
the efficiency, strategically mitigating the computational load
by excluding a significant volume of data points unrelated to
road markings.

2) Probabilistic Local Map Update: A local map is con-
structed through the aggregation of spatio-temporally succes-
sive LiDAR scans using an odometry, incorporating high-

reflectance points to generate a dense point cloud for road
marking detection. However, with the accumulation of scan
data, the volume of information grows substantially, leading
to an increasing computational burden.

To achieve real-time performance, a novel approach for
probabilistically updating the local map is introduced. This
approach employs a probabilistic discarding strategy, wherein
each point in the map is selectively removed based on a
calculated probability value. The probability assigned to the
i-th point in the local map, denoted as p;, is computed by

1
T (R Rl /)

where k denotes the index of the current frame, and k;
represents the frame from which the i-th point originates. n
is a manually-set parameter to determine the probability of
discarding old points. As 7 increases, old points are more
likely to be retained, resulting in a higher density of points
in the probabilistic local map.

P 3)

As indicated by (3), higher retaining probability values are
assigned to newly observed points by the LiDAR sensor. This
strategy effectively ensures the spatio-temporal consistency of
the local map, alleviates the impact of accumulated errors
over time. Moreover, when contrasted with the aggregation
method employing scans within a fixed window, the proposed
approach ensures a more seamless transition in the local map
data, thereby yielding higher-quality LiBEV images.

3) LiBEV Image Generation: The generation of the LiIBEV
image involves dividing the local map into grid cells on
the ground plane, where each cell corresponds to a pixel in
the LiBEV image. Within each cell, the RGB value of the
corresponding pixel is determined by mapping the maximum
intensity value among the enclosed points using a color map.

Our implementation leverages a proficient instance segmen-
tation network, specifically the CenterMask [9], to accurately
segment semantic road markings from the generated LiBEV
images. Subsequently, points located within the grid cells
corresponding to the segmented pixels are extracted from
the local map. The extraction yields a semantic point cloud



wherein each point is labeled with a specific road marking
category. Notably, our approach is designed to accommodate
the segmentation of up to 9 types of road markings, including
dashed lanes, solid lanes, stop lines, texts, arrows, diamond
signs, triangle sighs, curbs and crosswalks, as shown in Fig.
1 (b). The incorporation of diverse semantic road markings,
in contrast to approaches solely focused on lane lines, sig-
nificantly enhances the robustness of map matching-based
pose estimation. In addition, since annotating image semantic
segmentation is faster and more convenient than annotating
point clouds, the proposed approach converts point clouds
into images, which is more conducive to the deployment in
practical applications.

B. SG-ICP-based Road Marking Registration with HD Map

After road marking detection, the detected road markings
can be associated with their corresponding elements in the
HD map shared with the same semantic label. Finally, road
marking registration is employed to estimate the pose of the
vehicle in 2D space. In this subsection, the SG-ICP algorithm
is introduced for robust registration of detected road markings
from LiDAR scans with semantic elements in the HD map.
In our proposed SG-ICP, detected road markings are divided
three categories, including lines, line segments and others.
Solid lanes and curbs exhibit a linear distribution in their point
clouds and lack distinct endpoints, and thus they are classified
as lines. Dashed lanes, sidewalks, and stop lines also have
a linear distribution but possess endpoints, leading to their
classification as line segments. Texts, arrows, diamond signs
and triangle signs do not have linear point cloud distribution,
and thus they are classified as others.

For lines, the lack of endpoints leads to the complete loss
of constraints along the linear direction of these markings.
For line segments, endpoints can provide constraints along
the linear direction. However, due to inaccurate endpoint
estimation, registration between endpoints still leads to sig-
nificant localization errors along the direction of the line
segment. Consequently, for linear markings, constraints along
their linear direction need to have minimal influence on the
pose estimation, mitigating the effect of under-constraint issues
in the overall pose estimation process. As for others, their
point clouds are not linearly distributed, thus often providing
sufficient constraints on the pose estimation. In our algorithm,
the registration of the three different categories of markings
is organized into a unified representation using the objective
function of generalized ICP (GICP).

The GICP algorithm incorporates a probabilistic model into
the optimization procedure, as defined by

n
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where q,,; and q;; represent a pair of corresponding points,
belonging respectively to the HD map element and the labeled
point cloud. Their correspondences are established through the
nearest neighbor search strategy in the ICP algorithm. C,,;

and C'1; represent the covariance matrices of points from map
and labeled point cloud, respectively, which are appropriately
constructed in our semantic GICP (SG-ICP) to mitigate the
influence of under-constrained direction.

In our SG-ICP, the probabilistic model is specifically de-
signed by exploiting the semantic and geometric attributes
inherent in semantic road markings. For the points lying on
the ¢-th detected road marking instance, the covariance matrix
C L 1s estimated by

1
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Uz

1 Z(pL(i,j) —Pri) (Prj) — p).

J

Cui-

where ppr; ) represents the j-th point of the i-th road
marking instance, pr; represents the centroid of the points.
Then, the singular value decomposition (SVD) is performed
on Cp,;.
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o1 and o9 satisfy o1 > o5. Then, a matrix 3; = diag(1,€) is

constructed, with e satisfying

le — 6, if the marking is classified lines;
€ = < le—1, if the marking is classified line segments;
1, if the marking is classified others.

@)
The three categories of road markings have distinct values of e,
representing the different constraints along the line direction.
A value of € closer to 1.0 indicates a stronger constraint along
the line direction. The final covariance matrix corresponding
to the i-th road marking can be calculated by

CrLi =U; %V, 8

The i-th semantic element in the HD map is represented
as {Vmis bmis P}, where v, g and Py = Py 5y, J =
1,2, , Ny} denote the main direction, the semantic label
and the point set of the map element, respectively. The rotation
that rotates the basis vector e; = [1,0]7 to the direction v,,;
can be calculated by

R, =cos0 I+ (1—cosf)rr’ +sinf-[r]yx, (9)
where

r=le1]x - Umi, 0= arccos(elv,,;). (10)

The symbol [r] denote the skew-symmetric matrix associated
with the vector . The covariance matrix corresponding to the
i-th semantic element is calculated by

Cmi = Ry 3 Ry;. Y

Finally, associations can be established between the se-
mantic point cloud and the closest points of the map el-
ements shared the same semantic label. Meanwhile, their
corresponding covariance matrices calculated in (8) and (11)
are then substituted into the objective function (4) to initiate
the optimization and iteration process. The probabilistic model
from SG-ICP characterizes both the semantic and geometric
attributes for road marking registration, which improves the



accuracy of pose estimation.

IV. EXPERIMENTAL EVALUATION

In this section, extensive experiments are conducted using
data collected from diverse scenarios and vehicular platforms,
demonstrating the accuracy and robustness of the proposed
approach across different scenes and types of LiDAR sensors.

A. Experimental Setup

All experiments are conducted on the NVIDIA Jetson
AGX Xavier. The acquisition frequency of LiDAR data is
set to 10H z. The global localization results of vehicles are
recorded using Real-Time Kinematic (RTK) and temporally
synchronized with the LiDAR data. These RTK results are
used as ground truths. The experimental scenarios and the
corresponding HD maps are shown in Fig. 3. Fangshanl and
Fangshan2 represent two open urban scenarios in Beijing
Fangshan, which covers a 0.30km x 0.25km area and spans
a length of 2.0km, respectively. Jiashan depicts an internal
road measuring 0.20km located in a test field in Zhejiang
Jiashan. Airport represents an internal road spanning a length
of 4.0km located within an airport. For the parameters of our
approach, the initial variances of the state-transition model and
the measurement model were experimentally set to 0.1 and 2.0
in the Kalman filter, respectively. ) to determine the discarding
probability of local map points was set to 50.0 empirically.

(d)

Fig. 3: The experimental scenarios (top) and their corresponding HD
maps (bottom). (a) Fangshanl (b) Jiashan (c) Fangshan2 (d) Airport.

B. Evaluation on Road Marking Detection

In this subsection, an experiment is conducted to assess the
performance of our road marking detection approach using
precision-recall metrics. To ensure a comprehensive evalua-
tion, 80% of the manually annotated LiBEV data is randomly
selected for training, while the remaining 20% is reserved for
testing. The manual annotations serve as the ground truths
against which we evaluate the precision and recall of our
approach in detecting road markings. A true positive sample
is identified when the Intersection over Union (IoU) between
the detected instance and its corresponding annotated instance
exceeds 0.5, and both instances shared the same semantic
label. Conversely, a false positive sample represent a detection
result for which no corresponding instance with the same
semantic label and an IoU greater than 0.5 could be found
in the ground truths. Meanwhile, a false negative sample
indicates that an instance present in the ground truth is not
successfully detected by our approach.

The precision, recall and Fl-score for all types of road
markings supported by the approach are presented in TABLE
I. The proposed approach successfully detects 9 distinct types
of road markings, assigning semantic labels to each point in
the LiDAR data, as visually depicted in Fig. 1 (b). The exper-
imental results demonstrate the effectiveness of our approach
in successfully detecting common road elements, achieving
high precision and recall rates. Notably, certain elements such
as curbs and crosswalks exhibit a slight decrease in precision,
attributed to their visual similarity to lane markings in LIBEV
images. However, the subsequent HD map registration steps
effectively mitigate the impact of these false positives on
localization. Moreover, the proposed detection approach is
highly efficient, meeting real-time perception requirements for
vehicles, which is detailed in Section IV-D.

C. Evaluation on Localization

The SG-ICP algorithm proposed in this paper is assessed
based on lateral, longitudinal, and yaw errors. The evaluation
encompasses eight experimental sequences, spanning four sce-
narios and employing seven different LiDAR configurations,
demonstrating the flexibility of the proposed approach. The
widely-used ICP algorithm is chosen as the baseline for eval-
uation, and the comparative results are presented in TABLE II.
As indicated in the table, the SG-ICP algorithm outperforms
the ICP-based approach in most sequences. Notably, SG-ICP
has a clear superiority in terms of lateral and yaw accuracy, due
to the emphasis placed on the sufficiently constrained direction
during the SG-ICP calculation process.

Fig. 4 depicts the visualized trajectories estimated by SG-
ICP-based and ICP-based approaches, respectively, in compar-
ison with the ground-truths acquired through RTK. It is worth
noting that the substantial localization error of SG-ICP and
ICP are marked with purple and red lines, respectively, where
estimated distance errors exceed 2.0 m or yaw errors surpass
5.0°. It is evident from Fig. 4 that SG-ICP demonstrates sig-
nificantly fewer occurrences of substantial localization errors
compared to ICP across all sequences.



TABLE I: The precision, recall and F1-score for all types of road marking supported by our approach.

Dla shed Solid Stop line Text Arrow Dlamond Trlgngle Curb Crosswalk  Average
ane lane sign sign
Precision  94.05% 86.11% 81.16% 89.19% 91.70% 94.66% 88.23% 64.52% 72.77% 86.31%
Recall 96.50% 85.48% 75.47% 100.00% 96.57% 97.37% 100.00% 76.11% 71.96% 88.56%
F1-score 95.27% 85.79% 78.21% 94.29% 94.07% 95.99% 93.75% 69.83% 72.36% 85.20%
TABLE II: Average localization error compared to the ground-truth obtained through RTK.
Sequence Scene LiDAR type Longitudinal error (m) Lateral error (m)  Yaw error (deg)
ICP SG-ICP ICP SG-ICP ICP  SG-ICP
S1 Fangshanl 2#Hesai-Pandar64 0.158 0.137 0.050 0.043 0.233 0.208
S2 Fangshanl 1#Hesai-Pandar64 0.165 0.160 0.051 0.041 0.386  0.346
S3 Fangshanl 2#VLP-32C 0.167 0.130 0.127 0.043 0.302  0.188
S4 Fangshanl 2#HAP 0.164 0.139 0.080 0.058 0.299  0.218
S5 Jiashan 2#VLP-32C + 1#VLP-16  0.082 0.077 0.055 0.050 0.547 0.401
S6 Jiashan 3#HAP 0.099 0.106 0.082 0.062 0.330  0.309
S7 Fangshan?2 1#Hesai-Pandar64 0.124 0.125 0.091 0.040 0.277 0.184
S8 Airport 2#Hesai-XT16 0.129 0.128 0.116 0.050 0.447 0.230

In conclusion, the proposed approach achieves centimeter-
level lateral localization accuracy in a variety of environmental
scenarios and with different types of LiDAR sensors. The
tested sensors encompass not only traditional mechanical
LiDARs like VLP-32C, Hesai-Pandar64, and Hesai-XT16 but
also solid-state LiDARs such as HAP. The comprehensive
experiments illustrate the robustness and adaptability of the ap-
proach across diverse scenarios and sensor types. In addition, it
is worth noting, as indicated in TABLE II, that the longitudinal
error is slightly larger than the lateral error. In the urban
road scenario where autonomous driving occurs, the majority
of road markings exhibit a linear shape along the longitudi-
nal direction. Consequently, the stronger influence of lateral
constraints, compared to longitudinal constraints, contributes
to a more accurate and precise lateral localization outcome.
Nevertheless, our approach ensures that the longitudinal error
remains below 0.20 m, thereby ensuring its effectiveness in
autonomous driving applications.

D. Evaluation on Runtime

During the experiments conducted on the eight sequences,
the runtime for each sub-step of our approach is detailed
in TABLE III. The corresponding box-plot depicting the
statistical results can be observed in Fig. 5. It is worth noting
that the runtime of the detection sub-step is divided into CPU
time and GPU time. CPU time refers to the time consumed
by the steps processed by the CPU, including high-reflectance
point segmentation, probabilistic local map update, and LiBEV
image generation. GPU time refers to the inference time of the
instance segmentation of the LiBEV image. The registration
sub-step is processed only by the CPU. It can be seen that,
when utilizing the onboard processor XAVIER, the average
and maximum runtime of the overall approach consistently
remains below 50 ms and 200 ms across various scenes and

types of LiDAR sensors. Consequently, the efficiency of the
proposed system proves sufficient for real-time perception and
localization in autonomous vehicle applications.

TABLE III: The runtime for each sub-step of the proposed approach.

Seq. Detection Detection Registration Total Time
(CPU) (GPU) Cost
S1 28.20ms 16.47ms 4.63ms 49.30ms
S2 20.34ms 16.36ms 4.25ms 40.95ms
S3 22.13ms 16.42ms 4.43ms 42.98ms
S4 19.66ms 18.21ms 3.48ms 41.35ms
S5 22.20ms 16.55ms 3.96ms 42.71ms
S6 17.46ms 19.13ms 4.73ms 41.32ms
S7 18.69ms 14.74ms 3.46ms 36.89ms
S8 19.98ms 16.75ms 2.63ms 39.36ms

Moreover, it is worth highlighting that the runtime on the S/
sequence is only 8.35 ms longer than that on the S2 sequence,
despite the fact that the data quantity of S/ is twice that
of S2 (as indicated in the LiDAR type column in TABLE
II). This observation demonstrates that the runtime does not
exhibit a linear increase with the quantity of the point cloud
data, because the substantial reduction in the quantity of the
aggregated local map points is achieved through a probabilistic
discarding strategy.

E. Evaluation on Robustness

To demonstrate the robustness of our approach, we evaluate
the localization errors at different vehicle speeds, as outlined
in TABLE IV. In particular, the vehicle was driven at speeds
of 20 km/h, 40 km/h, and 60 km/h in the Fangshanl scenario
using 1 Hesai-Pandar64 LiDAR. The obtained results were
then compared against the ground-truth provided by RTK.
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Fig. 4: Comparison between the trajectories estimated by SG-ICP and
ICP is conducted using ground-truth trajectories provided by RTK.
The substantial localization error of SG-ICP and ICP are marked with
purple and red lines, respectively, where estimated distance errors
exceed 2.0 m or yaw errors surpass 5.0°.

As evident from TABLE IV, there is a slight increase in
the localization error with higher driving speeds. This can
be attributed to the fact that, as the driving speed increases,
the point cloud data captured by the LiDAR sensors is more
prone to motion distortions. Despite the slight increase in
localization error with higher driving speeds, the proposed
approach consistently maintains a relatively high level of
localization accuracy. This demonstrates the robustness of the
approach across varying vehicle speeds. Regarding real-time
performance, as indicated in TABLE IV, the overall system
runtime is minimally affected by increases in driving speed.
This further highlights the robustness of the system in handling
variations in vehicle speed.

To illustrate the robustness of our approach under varying
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Fig. 5: A box plot illustrating the time consumption for each sub-step
of the proposed approach.

TABLE IV: The localization errors at various driving speeds.

Speeds Longitudinal ~ Lateral Yaw error  Time cost
error (m) error (m) (deg) (ms)
20 km/h 0.166 0.048 0.366 42.56
40 km/h 0.124 0.067 0.620 44.40
60 km/h 0.153 0.091 0.775 44.92

weather conditions, experiments were conducted in different
settings. As depicted in Fig. 6, the intensity distribution
of LiDAR point clouds on dry and wet road surfaces (on
sunny and rainy days) typically exhibits significant differences.
As a result, rainy weather poses considerable challenges
to intensity-based road marking extraction, particularly for
methods relying on fixed intensity thresholds. The LiBEV
images generated under both sunny and rainy weather con-
ditions are depicted in Fig. 7. It is evident that the proposed
adaptive threshold-based approach consistently provides stable
and accurate segmentation results, even in the presence of
significantly different intensity distributions caused by vary-
ing weather conditions. TABLE V presents a comparison of
localization errors under both dry and wet ground conditions in
the Fangshanl scenario, employing 1 Hesai-Pandar64 LiDAR.
Although more noise in LiBEV images causes an increase
in localization error when driving on wet ground, it can still
ensure average lateral error within 0.10 m and longitudinal
error within 0.20 m. These results demonstrate the robustness
of our approach in addressing challenging weather conditions.

TABLE V: The localization errors at various road conditions.

Speeds Longitudinal Lateral Yaw error
P error (m) error (m) (deg)
Dry road 0.160 0.041 0.346
Wet road 0.199 0.056 0.390

V. CONCLUSION

In this paper, we introduce a LiDAR-based online environ-
mental perception and localization system with high efficiency
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Fig. 6: Histograms illustrating the LiDAR intensity distribution on (a)
sunny and (b) rainy days, respectively, in the Fangshanl scenario.
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Fig. 7: The LiBEV images on (a) sunny and (b) rainy days in the
Fangshanl scenario. Pixel coloring is based on intensity values, with
green representing high intensity and red representing low intensity.

and robustness. The proposed road marking detection approach
employs a novel adaptive segmentation technique to enhance
efficiency, and utilize a spatio-temporal probabilistic local map
to ensure the density of points. For road marking registration,
an SG-ICP algorithm is designed, modeling linear road mark-
ings as 1-manifolds embedded in 2D space. Our approach min-
imizes the influence of constraints along the linear direction
of markings, to address the under-constrained problem, and
thus improve the localization accuracy. Extensive experiments
conducted in real-world urban environments demonstrate the
effectiveness and robustness of the proposed system, showcas-
ing its potential for reliable online environmental perception
and localization. However, our approach cannot be applied to
roads without road markings on the ground surface, due to
the lack of high-reflectance points. In future work, we will
explore the effective utilization of above-ground information
to improve the robustness of localization.
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