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In the field of robotics, due to the complexity of real environments, place recognition using the 3D LiDAR
is always a challenging problem. The spatial relations of internal structures underlying the LiDAR data
from different places are distinguishable, which can be used to describe the environment. In this paper,
we utilize the spatial relations of internal structures and propose a two-level framework for 3D LiDAR
place recognition based on the spatial relation graph (SRG). At first, the proposed framework segments

Keywords: the point cloud into multiple clusters, then the features of the clusters and the spatial relation descriptors
Place recognition (SRDs) between the clusters are extracted, and the point cloud is represented by the SRG, which uses the
3D LiDAR clusters as the nodes and their spatial relations as the edges. After that, we propose a two-level matching

Spatial relation graph
Two-level framework

model in which two different models are fused for accurately and efficiently matching the SRGs, including
the upper-level searching model (U-LSM) and lower-level matching model (L-LMM). In the U-LSM, an
incremental bag-of-words model is used to search for candidate SRGs through the distribution of the
SRDs in the SRG. In the L-LMM, we utilize the improved spectral method to calculate similarities between
the current SRG and the candidates. The experimental results demonstrate that our framework achieves
good precision, recall and viewpoint robustness on both public benchmarks and self-built campus dataset.

© 2021 Elsevier Ltd. All rights reserved.

1. Introduction

Place recognition is a fundamental and critical problem of pat-
tern recognition in the field of robotics. An intelligent robot should
have the ability to recognize the place where it is currently located,
so as to complete the task of navigation. Meanwhile, place recog-
nition can also be used for loop closure detection in simultaneous
localization and mapping (SLAM) [1-3]. Long-term SLAM in large-
scale environments cannot avoid error accumulation, which makes
the mapping results inconsistent. In this situation, the place recog-
nition method can be utilized to detect the loop closure which is
a prerequisite for eliminating accumulated error.

In recent years, with the development of computer vision tech-
nology, image-based place recognition has achieved excellent re-
sults [4-7]. However, images are sensitive to illumination and the
viewpoint of camera. Hence, image-based place recognition may
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fail in some challenging situations such as the dark environments.
The 3D LiDAR can directly obtain the geometric information of
the environments with high precision. Compared with the camera,
the 3D LiDAR has a wider field of view and is hardly affected by
the illumination changes. Therefore, considerable methods on place
recognition have been proposed using the 3D LiDAR [8-13].

Inspired by the methods of image retrieval, the traditional
methods of place recognition with 3D LiDAR detect the key points
and extract the local descriptors from the LiDAR data to describe
the environment [8,14]. In order to improve the efficiency of place
recognition, some methods utilize the overall distribution of point
clouds captured by the LiDAR to extract global descriptors and
perform place recognition by measuring the similarities between
the global descriptors [12,15]. In recent years, some segmentation-
based methods have been proposed, which segment the LiDAR
data into multiple clusters, extract the feature from each clutser,
and perform place recognition by matching these segmented clus-
ters [16,17].

However, compared with the feature of cluster, the spatial rela-
tions between the clusters have not been fully utilized on place
recognition. In this paper, we propose a two-level framework
which utilizes both the shape characteristics of clusters and the
spatial relations between the clusters to perform place recognition.
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The proposed framework contains two phases, i.e., description and
searching. In the description phase, the spatial relation descriptor
(SRD) is proposed to encode the relative spatial relations between
a pair of clusters. Then, the environment is described by the spa-
tial relation graph (SRG), which takes the clusters as the nodes,
the features of clusters as the node attributes (describing the shape
characteristics of clusters), the relative relations between the clus-
ters as the edges, and the SRDs as the edge attributes. Meanwhile,
a two-level matching model including the upper-level searching
model (U-LSM) and the lower-level matching model (L-LMM), is
proposed to perform a coarse-to-fine matching of the SRGs. In the
U-LSM, an incremental BoW model without offline training is used
to quickly search the candidate SRGs from historical data. In the
L-LMM, the spectral method is improved for calculating the simi-
larities between the SRGs. The contributions of the paper are sum-
marized as follows.

o The proposed framework pays attention to the relative spatial
relations between the segmented clusters in the LiDAR data.
The SRD is proposed to encode the relative spatial relation be-
tween a pair of clusters with high distinguishability. Moreover,
the SRD does not make any prior assumptions about the models
of clusters, it can describe the general spatial relation between
the clusters with irregular shape.

e In the proposed framework, the SRG is proposed to describe
the environment, which contains different types of descriptive
information (nodes and edges) and organizes them effectively
into a unified representation. Moreover, a novel two-level graph
matching model is proposed to match the SRGs, which can ac-
curately and efficiently search for the similar SRGs from histori-
cal data and calculate the similarities between SRGs. It is worth
pointing out that the whole process does not require an offline
pre-training process.

o Comprehensive experiments are carried out on multiple
datasets such as KITTI, Hannover2 and self-built campus
dataset, demonstrating that the proposed SRD is distinguishable
and our framework can achieve good results in precision, recall
and viewpoint robustness.

The rest of paper is organized as below. The related works
are presented in the Section 2. In Section 3, we give a detailed
description for the proposed framework. Extensive experimental
evaluations are shown in Section 4. Conclusions are presented in
Section 5.

2. Related work

Generally, place recognition methods using the 3D LiDAR are
divided into four types including scan-matching-based methods,
local descriptor-based methods, global descriptor-based methods
and segmentation-based methods. The scan-matching-based meth-
ods [18,19] align a pair of point clouds through iterative calcu-
lation. The most representative scan-matching-based methods are
the iterative closest points (ICP) [18] and its variations, such as the
point-to-line ICP (PLICP) [19]. However, the scan-matching-based
methods may fail without the initial transformation between two
scans, which limits its applications in the real scenes.

The local descriptor-based methods [8,20-26]| perform the place
recognition through matching the local descriptors extracted from
the key points in the point cloud. In the point feature histogram
(PFH) [20], the geometric information in the neighborhood of a
key point was encoded to a histogram, then the place recognition
was performed by matching the key points with similar PFHs. The
fast point feature histogram (FPFH) [21] improved the efficiency of
PFH by reordering the data and caching previously computed val-
ues, while retaining most of the descriptive ability of the PFH. The
SHOT [22] generated the local descriptor by counting the normal
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vectors in the neighborhood of a key point. The ISHOT [23] added
the laser intensity to the SHOT for enhancing the descriptive abil-
ity. In [24] and [25], the point clouds were converted into bearing
angle images, and then SURFs [27] and ORBs [28] were extracted
to describe the environments, respectively. Similarly, in [26], the
point clouds were converted into the range images, and the lo-
cal descriptors were extracted based on the Laplacian of Gaussian
(LoG) method. The work of [8] extended the method in [26] and
combined the Normal-Aligned Radial Features (NARFs) extracted
from the range images and the bag-of-words (BoW) model to per-
form the place recognition. Generally, the recognition ability of lo-
cal descriptor-based methods depends on the number of key points
substantially, which makes it difficult to balance the recognition
accuracy and efficiency.

The global descriptor-based methods [9-13,15] extract global
descriptors from a whole point cloud and perform place recog-
nition by measuring the similarities between the global descrip-
tors. For example, the viewpoint feature histogram (VFH) [15] ex-
tended the FPFH for the entire point cloud and computed statis-
tics between the viewpoint and the normal vectors estimated at
each point. Since the viewpoint is encoded into the descriptor, the
VFH is not suitable for the situation with changing viewpoint. The
M2DP [12] used the distribution of the point cloud projected to
multiple planes to extract global descriptors, which makes it effi-
cient to be extracted. However, the viewpoint robustness of M2DP
is also not outstanding because the distribution of the point cloud
will change with the change of viewpoint. The scan context (SC)
[13] calculated a global descriptor by dividing the point cloud into
multiple bins from the top view and encoding the max height of
the points in each bin into a matrix. The SC method can achieve
favorable performance on place recognition under the planar mo-
tion of the robot. However, if the z-axis of the sensor frame is not
invariant w.r.t. the global coordinate system, the SC method can-
not obtain good results. In recent years, due to the rapid develop-
ment of deep learning, some researches have utilized deep learn-
ing methods to generate global descriptors for the 3D LiDAR place
recognition [29]. PointNetVLAD [9] used deep learning to perform
large-scale 3D LiDAR place recognition for the first time. SeqLPD
[10] extended the PointNetVLAD by adopting a coarse-to-fine se-
quence matching strategy. In [11], the point clouds were converted
into range images and a convolutional neural network (CNN) was
used to extract the global descriptors. OverlapNet [30] utilized a
deep neural network to provide overlap area and relative yaw an-
gle estimates between two LiDAR scans, and further performed
loop closure detection in a SLAM system. In DiSCO [31], a CNN-
based network architecture was proposed to extract global descrip-
tors with rotation invariance. Meanwhile, a differentiable phase
correlation estimator is proposed for relative orientation estima-
tion between two scans. The aforementioned deep learning-based
methods require sufficient data and time for pre-training, which
limits its application in unknown scenes.

The segmentation-based methods [16,17,32-36] segment the
point cloud into several local areas, such as planar patches, line
segments or irregular clusters, and then perform the place recog-
nition according to the descriptors of local areas or the relations
between the local areas. In [32], the planes were segmented from
the point cloud, and the geometric relations between neighbouring
planar patches are extracted to describe the environments. Simi-
larly, both the plane surfaces and line segments were segmented
to describe the environment in [33], and then a robust proba-
bilistic method for selecting the best pose hypothesis was used
to match overlapping point clouds. However, the methods in both
[32] and [33] require structured or semi-structured scenes to seg-
ment the plane patches or line segments stably. In [34], the ob-
jects were segmented from the point cloud, and the place recogni-
tion was performed by comparing the objects from the new places
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Fig. 1. System overview.

against the existing objects. This method can only work well with
a small number of objects in small scale environments. The Seg-
match [16] [17] segmented the point cloud into multiple irregular
clusters to describe the environment and performed place recog-
nition according to the similarities of these clusters. Nevertheless,
in the Segmatch, a classifier with offline training is required to de-
termine whether the clusters represent the same object. Moreover,
the real environments may contain clusters that are extremely sim-
ilar in shape, which makes it difficult to build correspondences
only through the similarities between the clusters. In [35], a se-
mantic graph (SG) representation for 3D point cloud scenes was
presented, which captured semantic information and topological
relations between objects. And a graph similarity network was pro-
posed for the matching of semantic graphs. In Locus [36], after seg-
mentation, the segment features extracted by a 3D CNN, and then
the topological and temporal information related to the segments
were aggregated by second-order pooling to obtain a global de-
scriptor of the point cloud. The aforementioned two methods take
the relations between segments into account, and achieve good
performance in KITTI dataset. However, the SG relies heavily on the
results of semantic segmentation, which severely limits the appli-
cation of the algorithm in diverse environments. Similarly, in Lo-
cus, the 3D CNN also needs to be well trained in advance to get
the effective feature for each segment.

3. Two-level place recognition framework

In this section, we present the details of the proposed two-
level framework for place recognition using 3D LiDAR. First, the
overview of our framework is introduced in Section 3.1, which
illustrates the overall process of the proposed framework. Then,
we present the extraction of SRD and the construction of SRG in
Section 3.2. Finally, the two-level matching model is presented in
Section 3.3, which fuses two different models to match the SRG
accurately and efficiently.

3.1. Overview of framework

Our framework is mainly divided into two phases, including the
description and searching. In the description phase, the point clouds
are represented by the SRGs to describe the environments. In the
searching phase, the SRGs are used to search for the similar SRGs
and determine whether the corresponding data are collected from
the same place. The system overview is shown in Fig. 1 where the
notations are listed below.

N The set of nodes in SRG

Fy The set of node attributes in SRG
E The set of edges in SRG

Fe The set of edge attributes in SRG
Qc The set of segmented clusters

7 [ T-  Growth [ Repression factor

Q The set of the candidate SRGs

Specifically, for the description phase, the Euclidean clustering
method is utilized to segment a point cloud into a set of clusters
¢, and for each cluster, the shape feature is extracted to describe
the shape of cluster. Then, the clusters are taken as the nodes of
the SRG, and the shape features of clusters are taken as node at-
tributes of the SRG, yielding the set of nodes N and the set of node
attributes Fy, respectively. Meanwhile, the edges of the SRG are de-
fined by the relative spatial relations between clusters and the cor-
responding edge attributes are the extracted SRDs, yielding the set
of edges E and the set of edge attributes Fg, respectively. Finally,
the SRG is constructed by N, E, Fy and F; together.

For the searching phase, the constructed SRG is fed into the U-
LSM to search for the similar SRGs from the historical data, which
is based on an established incremental BoW tree and outputs the
set of candidates €2;. Then, the candidates 2; are fed into the
L-LMM which utilizes the spectral method to calculate the simi-
larities between the current SRG and the candidates, respectively.
Finally, according to the similarities, our framework determines
whether the scans are collected from the same places. In addition,
a feedback mechanism is applied to improve the searching ability
of the U-LSM. Specifically, after receiving the candidates provided
by the U-LSM, the growth factor g or repression factor 7, are cal-
culated in the L-LMM according to the situations of SRG matching.
Then, 7z and 7, are fed back from the L-LMM to the U-LSM, and
the parameters of U-LSM are adjusted adaptively according to 7g
and 7, which make the candidates given by the U-LSM more ac-
curate in the future search.

3.2. Construction of SRG

3.2.1. Point cloud segmentation

Before the segmentation of a point cloud, ground removal is a
necessary step to make the clusters separated from each other. We
adopt the fast segmentation algorithm [37] to efficiently remove
the ground in the point cloud. The plane parameters of the ground
are fitted heuristically, and then the ground is removed according
to the plane parameters. After ground removal, the Euclidean clus-
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Fig. 2. The visualization of the segmentation results. Fig. 2(a) shows the point cloud before the segmentation, and Fig. 2(b) shows the point cloud after the segmentation, in

which the different clusters are shown in different colors.

tering method provided by PCL! is used to segment the point cloud
into multiple clusters. In order to improve efficiency, 3D grids are
established in the space of point cloud, and then the clusters are
obtained by clustering the grids and their internal points based on
the Euclidean distances. Fig. 2 shows the visualization of segment-
ing a point cloud captured by the 3D LiDAR. As can be seen, the
Euclidean clustering method provided an effective result of seg-
mentation. Specifically, after the segmentation, the ground points
and scattered points far away from the laser transmitter are re-
moved, while remaining the clusters which can retain the charac-
teristics of the environment.

3.2.2. Spatial relation descriptor

In real environments, especially in outdoor scenes, the relative
spatial relations between the segmented clusters are distinguish-
able. Moreover, compared with the camera, the 3D LiDAR can ob-
tain geometric information in the environment with a wide field
of view and high precision, which is convenient for extracting the
relative spatial relations. In this section, the SRD is proposed to
encode the relative spatial relations between clusters. The compu-
tation of the SRD includes two steps, i.e., the relational unit extrac-
tion and relational unit encoding.

1 http://pointclouds.org

A relational unit can be defined for any pair of points from two
different clusters. A relational unit contains three components Iy, [,
and 6, which represent the sum of distances from the points to the
boundaries of the corresponding clusters, the distance between the
boundaries of the clusters and the angle between the line connect-
ing the two points and the line connecting two centroids of the
clusters, respectively. The relational unit extraction is illustrated in
Fig. 3. For a pair of clusters C; and G, their centroids are denoted
by pj and pf, respectively. The direction vector from p§ to pg is de-
noted by v. Then, for a pair of points p5 and pj, which are any pair
of points from C; and C, respectively, the direction vector from p;.
to pj is denoted by w. Next, we calculate the intersection points p?
and pﬁ between the line segment p; pj, and the outer boundaries of
C; and G, respectively. We define the distance between p; and p?
as dq, and the distance between p? and pi as d,, the distance be-
tween pj and pz as ds, and the angle between g and v as w. The
relational unit ry = Ry(p], py) = {l1, >, 0} can be calculated by

l] = d] +d3

L =d,

6 w if w=90° (1)
~ 1180° — w otherwise
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Fig. 3. Diagram of the relational unit extraction.

In the implementation, a grid-based method is designed to cal-
culate d; and dj efficiently. First, the maximum and minimum co-
ordinates of the clusters in the %, y and z directions are calculated
to measure the scope of the cluster. Then, the space is equally di-
vided into 64 x 64 x 64 grids according to the scope of the cluster.
A grid cell is called occupied cell if it contains LiDAR points, and
empty cell otherwise. Therefore, it is easy to find the farthest oc-
cupied cell from p; along the direction of g in Cj, and then we
calculate the distance between pg and the center of this occupied
cell as dy. Similarly, d3 is calculated by the same way. Next, d, is
obtained by subtracting d;, d3 from the distance between the p;.
and pj.

It is worth pointing out that, in the relational unit, /; and I,
measure the relative shape and distance between two clusters, and
0 measures the relative orientation between two clusters. More-
over, in the extraction of relational unit, the boundary information
of the clusters is fused into the computation of [y and I, which
makes the relational unit sensitive to the shape of the cluster and
increases the distinguishability of SRD encoded by the relational
unit. In addition, three principles are followed to extract the SRD
and the relational units, i.e., the symmetry, viewpoint robustness
and shape sensitivity. The symmetry means that the SRD extracted
form C; to Cj should be completely consistent with the SRD from
Cy to Cj. Hence, Iy is defined by dy +d3 in the relational unit to
guarantee the symmetry. The viewpoint robustness means that the
negative impact of viewpoint changes should be reduced in the ex-
traction process of the SRD. Therefore, the relational unit does not
contain components directly related to the viewpoint of robot. The
shape sensitivity refers that SRDs extracted from clusters with dif-
ferent shapes should be distinguishable, for this reason, the bound-
ary points p? and pﬁ are selected to calculate the relational units,
so as to fit the outer contours between the two clusters.

For the relational unit encoding, given a pair of clusters C; and
Ci, Ny pairs of points are randomly selected from a pair of clus-
ters, denoted by {{p;, pi)i=1..... Nr|p§ e Gj. pl, € G}. And the re-
lational unit corresponding to each pair of points is extracted, gen-
erating the corresponding set of relational units, denoted by {ri, =
Ru(p;, pi) ={li.1.0"}.i=1,....N;}. Then, the encoding method in
[38] is applied to encode the relational units into a descriptor

called SRD, which utilizes the statistical information of the N; re-
lational units to encode the relative relations from different cluster
pairs into a descriptor. The method in [38] is sensitive to the value
in the relational units and does not require the prior knowledge of
the distribution of the relational units.

Specifically, we first split the space of relational unit into dis-
crete cells along each dimension and [y, I, and € are divided into
the cells according to their values. Then, for each element in the
relational unit, two weights are calculated according to the dis-
tances of value to the upper and lower boundary of the cells.
Therefore, for three elements, there are a total of eight (23) combi-
nations of weights. Then, the result of multiplying the weights of
the corresponding combination is added to an element of the SRD
and the index of the element can be obtained by the indices of
the cells along each dimension. The encoding method of the rela-
tional units is different from the work [38] by the variables and the
value range of variables. The specific encoding process is shown in
Algorithm 1.

3.2.3. Spatial relation graph

The SRG is a complete graph, represented by Gs = {N, E, Fy, Fz},
where N is the set of nodes, E is the set of edges, Fy is the set
of node attributes and F; is the set of edge attributes. The node
attribute is defined by f, = {f', fP, f*, f%}, where f!, fP, fs and f¢
quantify the linearity, planarity, scattering and anisotropy of the
cluster, respectively, which are calculated by

fl= (A —A2) /M

fp = ()\2 - )"3)/)\1 (2)
FF=x3/M

Fi= (A1 —A3)/ M

where A1, A, and A3 are three eigenvalues of the covariance ma-
trix M, of the points in the cluster, which satisfy A{, A5, A3 € R and
A1 > Ay > A3 > 0. The feature f;; describes the shape characteristics
of the clusters to distinguish from each other and the extraction of
fn is efficient, because the eigen decomposition of 3 x 3 matrix can
be performed very quickly.

The edge attribute of the SRG is denoted by fe, and the SRDs are
adopted as the edge attributes f.. Although f, and f, are two types
of feature which have different meanings and dimensions, the SRG
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Algorithm 1 Relational unit encoding.

Input: The set of relational units Q= {ri|i=1,2,..., n}, ri, =
.15, 0%

Output: SRD Ds

1: Set the value range of the relational units [[Min, [max],
[13nin, 1;max] and [6™in, #™ax] to [0, 10], [0, 40] and [0, 107 /180],
respectively.

2: Set the number of interval divisions 1y, n;, and ng to 4, 4 and
4, respectively.

: Initialize the SRD Ds e R(mlﬂ)‘(mzﬂ)("eﬂ)

3

4:fori=1,2,...,ndo

s: kg, = | (I - 1min) gy, /(1max — pmin) |

6 kg, = | (I — 1) g, /(12 — pin) |

7 k@ — |_ i _ gmin)ne/(gmax _ Qmin)J

8 o = (=) my /(I = 1) — Ky, 0] =1 -0

o g =~ ) /(17 1) iy f, —1 -

10: Wy = (Qi—Hmi“)nQ/(OmaX—Omi“) —k@, a)é =1 — Wy

1 Ds[ky - (my, +1) (g + 1) +kp, - (g + 1) + kg |+ = o] o o)

12: Ds[ky, - (n, + 1) (g + 1) + ki, - (g + 1) + (kg + 1) ]+ =
a);1 a);za)g

130 D[k, - (n, + 1) (Mg + D)+ (k, +1) - (g + 1) + kg |+ =
], @, @)

14 Ds[ky, - (n, +1) (g + 1) + (ki +1) - (ng + 1) + (kg + D]+ =
a);]a),zwg

150 Ds[(ky, +1) - (m, +1) (g + 1) +ky, - (Mg + 1) + kg |+ =
@y wl/zwé)

6:  Ds[(ky +1)- (my, + ) g+ 1) +ky, - (ng +1) + (kg + D]+ =
a)l]a);zwe

17 Ds[(ky, +1) - (m, + 1) (g + 1) + (k, + 1) - (g + 1)+kg |+ =
wlzwlzwé

18 Ds[(ky+1) - (n,+1) o+ 1)+ (ky, +1)- (Mg + 1)+ (kg +1) ]+ =
a)llwlzwg

19: end for

can organize them effectively, yielding a unified representation to
describe the environments. Moreover, the SRG is a complete graph
and contains all the relative spatial relations between the clusters
in one scan. Hence, extensive information is retained in an SRG to
describe the environment.

3.3. Two-level matching framework

To perform the place recognition, the SRGs constructed for dif-
ferent places need to be matched. The most widely used graph
matching methods are the learning-based methods [39] and the
tree search methods [40]. The learning-based methods match the
graphs through a pre-training model, which requires the prior
knowledge of the graphs, while the tree search method is time-
consuming for complete graphs (e.g..SRGs). To this end, we pro-
pose a two-level matching model for the SRGs, including the U-
LSM and the L-LMM. In the U-LSM, an incremental BoW model is
established using the SRDs in the SRGs from the historical data,
and the SRGs similar to the current SRG are searched out via a fast
voting strategy as the candidates. Then, in the L-LMM, an improved
spectral method is used to perform an exact similarity calculation
between the current SRG and the candidates obtained from the U-
LSM. In addition, the U-LSM can dynamically adjust its parameters
through the feedback from the L-LMM. Hence, our framework con-
tinuously optimizes its performance while the robot performs the
place recognition, yielding both efficiency and high quality.
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3.3.1. Upper-level searching model

As mentioned in Section 3.2.2, the SRD is used to describe the
relative relation between a pair of clusters and has powerful dis-
tinguishability. Moreover, the SRG is a complete graph, containing
all relative relations between the clusters. Hence, the SRDs in an
SRG contains rich information which can be used to search for the
similar SRGs. In this paper, an incremental BoW model without of-
fline training is used to fit the distribution of SRDs, in which the
incremental BoW tree is initialized and maintained by clustering
the SRDs. Then, the candidates can be searched out by a fast vot-
ing strategy. In the U-LSM, the incremental BoW model includes
three steps, i.e., initialization, updating, and voting.

For the initialization, a BoW tree is initialized by clustering the
edge attributes (SRDs) of the first SRG into Kg,y SRD clusters by K-
Means, that is, the root node Ny of the BoW tree has Kpgy chil-
dren, which are the leaf nodes defined by the SRD clusters, and the
attributes of leaf nodes are defined by the centers of SRD clusters.
According to the centers of the SRD clusters, the SRDs can retrieve
the leaf nodes to which they belong using the BoW tree from-top-
to-bottom. Each leaf node Ni . has corresponding inverted indexes

) leaf '
L to record the SRDs belonging to N, and the SRGs to which

iny’ eaf
the SRDs belongs.

The updating process is to realize the incremental update of the
BoW tree. As new SRGs are generated, the SRDs in them are added
to the inverted indexes of leaf nodes in the BoW tree. As the data
increases, the initial structure of BowW tree cannot fit the new dis-
tribution of the SRDs. Instead of re-clustering all the SRDs in the
tree, when the size of the inverted indexes Il?m} corresponding to
Nlieaf is greater than a threshold Ths, the SRDs indexed by I = are
re-clustered by K-Means, and K,y new leaf nodes are generated

as the children of N{eaf, which is called the split of N{eaf. Mean-

while, the SRDs in I,?nu are reallocated to the new inverted indexes
in the new leaf nodes.

In the voting process, a fast voting strategy is designed to effi-
ciently search for the candidates for an SRG. First, the initial votes
of historical SRGs are set to 0. For the current SRG G, the set of
edge attributes Ff is sent into the BoW tree. And for each descrip-
tor f¢ in Ff, the leaf node to which f§ belongs is retrieved from-
top-to-bottom. After that, for every SRG Gi indexed by the corre-
sponding inverted indexes, its votes plus t;, which is calculated by

1

= 3
(Inc —m* + 1) - | F¢| ?

&

where n. and n; are the numbers of edge attributes belonging to
the inverted indexes in G and G, respectively. In the incremental
BoW model, not only the types of words are considered in the vot-
ing process, but the number of each type is also used to determine
the number of votes. For a certain word, the more the numbers of
the words in the searching and query SRGs, respectively, vary from
each other, the less the number of votes increases.

In addition, The incremental BoW tree is constructed from top
to bottom. Thus, the SRG ordering may affect the split order of the
leaf nodes during the incremental construction process. However,
in the U-LSM of our framework, the impact of SRD or SRG order
on the BoW tree is not significant. First, the retrieval performance
of the BoW tree mainly relies on the clustering results of the de-
scriptors. Regardless of the specific structure of the BoW tree, the
sufficiently similar SRDs always tend to be clustered into the same
class. As a result, the performance of SRG retrieval is hardly be af-
fected by the SRG ordering in the construction of incremental Bow
trees. Second, for the retrieval time of the BoW tree, as reported in
the paper [41], once sufficient data are included in the incremen-
tal BoW structure, the tree is supposed to be balanced regardless
of the possible different ordering of the SRGs. Therefore, the time
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consumption of SRG retrieval is hardly be affected by the SRG or-
dering in the construction of incremental BoW trees.

3.3.2. Lower-level matching model

In order to evaluate the similarities between SRGs, the im-
proved spectral method is applied in the L-LMM. The spectral
method [42] is a graph matching method based on matrix spectral
decomposition. First, an affinity matrix M, is established of which
the rows and columns express the potential correspondences of
graph nodes. The elements of M, measure the weights of a pair
of potential correspondences. Then, through the principal compo-
nent analysis of M,, the spectral method utilizes the eigenvector
corresponding to the largest eigenvalue to determine the node cor-
respondences of the two graphs. The spectral method has high
matching precision and has been successfully applied in many
fields. In this paper, the elements of M, can be calculated by

Mq(i-ny+ j.i' - ny + ')

2

L [ i fi
45— g ifi= = jand| fi - fi ]| < 3om,
= i | (4)
45_; lfl;é_]l,?é],and‘ ij i’j'H < 30,
. 2052 s s e e es

0, otherwise

where n; and n, are the numbers of nodes in two SRGs, i, j, i, j’

are the indices of nodes in two SRGs. If i = j and i = j/, the ele-
ments of M, measure how well node i matches the node i’. Assign-
ments that are unlikely to be correct will be filtered out. Similarly,
ifi # jand i # j/, the elements of My describes how well the rela-
tive pairwise relations of two edge (7, j') is preserved after putting
them in correspondence with the edge (i, j). oy, o are the param-
eters used to adjust the weights of the potential correspondences.
The larger o, and oe, the more pairwise relations between wrong
assignments will get a positive score.

To evaluate the similarity between SRGs, the spectral method is
improved from two aspects. First, a filtering threshold s:(8sc > 0)
is set to avoid overmatching when using the main eigenvector
to calculate the correspondences. Second, although the spectral
method can calculate the correspondences of nodes in the graph,
it cannot evaluate the similarity between two graphs. Therefore, a
similarity calculation function is designed to calculate the similar-
ity between two SRGs quickly and accurately, which can be calcu-
lated by

s =x"Myx/(ny - ny) — (N +nz)R?/2n, (5)

where x is the correspondences calculated by the spectral method,
ne is the number of correspondences, R is penalty term which
punishes the insufficient correspondences. The process of the im-
proved spectral method is shown in Algorithm 2.

3.3.3. Connection between two levels

The U-LSM and the L-LMM are fused closely in the two-level
matching model as illustrated in Fig. 4. The L-LMM receives the
candidates provided by the U-LSM to calculate the similarities be-
tween the SRGs. Meanwhile, the L-LMM provides the feedback in-
formation to update the parameters of the U-LSM, so as to adjust
the structure of BoW tree in the U-LSM.

First, the Ksgg candidates are provided by the U-LSM to the L-
LMM. Theoretically, the results given by the L-LMM considering
entire information of the SRG are more accurate than the results
given by the U-LSM only considering the statistic information in
the SRG. Therefore, Thus, a larger value of Kgz; makes the final re-
sults given by the whole framework more accurate. However, since
the time consumption of the graph matching process in L-LMM is
much greater than the graph search process in U-LSM. In order to
ensure the efficiency of the framework, Kszz cannot be too large.
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Algorithm 2 Improved spectral method for evaluating similarities
between SRGs.
Input: G, G and their affinity matrix Mg, G, Gi contain n; and n,
nodes, respectively.
Output: s (Similarity between G¢ and Gi)
1: Initialize the similarity s =0 and the correspondences vector
x = zeros(nq - ny).
2: Set the penalty term R = 1.2 and filtering threshold §s. = 0.05.
3: [A,V] =Eigen(My), A and V are the set of eigenvalues and
eigenvectors respectively.

4 v=V(,1)
5: while true do
6: [valy, posm]| = max(v), where valy, is the maximum compo-

nent in v, and posp, is the index of the valy.
: if valy, < 55 then
8: break

9: end if

10: v[posm] =0, x[posm]=1

11: posg = posm/Ny, POSs = POSm%ity
12: fori=1,..., n; do

13: v[i-ny + poss] =0

14: end for

15: fori=1,...,n, do

16: v[posy-ny +jl=0

17: end for
18: end while '
19: The similarity s between G and G} is calculated by (5)

In the implementation, the Kggc is set to 25, which is a moderate
selection to balance the accuracy and the efficiency of the whole
framwork.

According to the matching conditions between the SRGs in the
L-LMM, the L-LMM transmits the growth factor 74(0 < 7z < 1) or
the repression factor 7,(t; > 1) to the leaf nodes of the BoW tree
in the U-LSM. Specifically, if the L-LMM matches the SRDs (edge
attributes in the SRG) belonging to different leaf nodes, it usually
indicates that the two leaf nodes are excessively split during the
increment of the BoW tree, thus it is necessary to avoid these two
leaf nodes from splitting again. Hence, the split threshold of the
leaf nodes is increased by Ths = Ths - T, which make the BoW tree
in the U-LSM grow slowly in the two leaf node. Similarly, if the
SRDs belonging to the same leaf node fail to match in the L-LMM,
it usually refers that there exist inconsistent SRDs in this leaf node,
and the leaf node needs to be further split to fit the real distri-
bution of SRDs. Hence, the split threshold of the leaf node is de-
creased by Ths = Ths - T, which accelerates the growth of the Bow
tree at the leaf node. After applying the feedback mechanism from
the L-LMM to the U-LSM, the structure of BoW tree in the U-LSM
is adaptively adjusted the tree grows. In the implementation, the
we select 7y =0.98, 1 = 1.05, which yields good performance of
the framework.

4. Experiments

In this section, the experimental setup is firstly introduced.
Second, distinguishability of the SRD is evaluated. Finally, our
place recognition framework is comprehensively evaluated by com-
parison with five state-of-the-art place recognition algorithms, in
terms of the precision-recall (P-R) and robustness.

4.1. Experimental setup

The KITTI [43], Hannover2 [44], and self-built campus dataset
in Nankai University (NKU-MC) are employed to carry out the
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Fig. 4. The connection between the two levels. @) The SRG sends its edge attributes to the U-LSM. 2) The U-LSM searches for the similar SRGs as the candidates and sends
them to the L-LMM. 3 The L-LMM receives the SRG with its nodes, edges, node attributes and edge attributes. @ The L-LMM calculates the similarities between the SRG
and the candidates. 5 The L-LMM sends back the growth or repression factor to the U-LSM. ® The U-LSM updates its internal parameters and adjusts its structure.

experiments. The KITTI dataset is collected in streets by a car
equipped with a Velodyne HDL-64H LiDAR. In the experiments,
the sequences 00, 05, 06, 07 and 08 are selected, which contain
4541, 2671, 1101, 1101 and 4071 frames of point cloud, respec-
tively. Each point cloud in the KITTI contains about 120,000 points
with max range of 100m. The Hannover2 dataset is collected in
the campus environment of the Universitt Hannover by a rotating
SICK LMS sensor. 922 frames of point cloud are obtained in the
Hannover2, and each point cloud contains approximately 16,600
points with max range of 30m. The NKU-MC is collected by a P3D-
X robot equipped with a Velodyne HDL-32 LiDAR. In the NKU-MC,
the robot travels around the campus and collects 2454 frames of
point cloud, each of which contains about 60,000 points with max
range of 120 m.

In all the experiments, two frames of data are considered to
be collected from the same place if their Euclidean distance is
less than 6.0 m. In order to avoid performing place recognition
with the adjacent frames, 50 adjacent frames before the current
frame are excluded from the searching scope. Under this condition,
there are 817, 513, 271, 86, 404, 289 and 360 positive samples in
KITTI 00, 05, 06, 07, 08, Hannover2 and NKU-MC sequence, respec-
tively. Moreover, the thresholds for segmenting point clouds are
set to 1.2 m, 1.0 m and 1.0 m on the KITTI, Hannover2 and NKU-
MC, respectively. All the experiments are carried out on a unified
hardware platform, with Intel i7-8700 CPU with a clock speed of
2.6GHz, 8GB memory, and Ubuntu 18.04 operating system.

4.2. SRD quality evaluation

First of all, the stability of SRD should be demonstrated. To this
end, an experiment is carried out to illustrate the influence of the
number of random point pairs N; to the stability of SRD. In the
experiment, 5000 pairs of clusters are selected from the KITTI 00
sequences. For each pair of clusters, the SRD is extracted for 10,000
times for a specific value of N;. Then, the centroid and covari-
ance of the 10,000 SRDs are calculated. Next, the maximum dis-
tance from the SRD to the centroid and the maximum eigenvalue
of the covariance are calculated. Finally, the maximum distances
and maximum eigenvalues of the covariances are averaged over
the 5000 pairs of clusters. The results are shown in Fig. 5, in which
the x-axis represents the value of Ny, and the y-axis represents the
average maximum distance and maximum eigenvalue for Fig. 5(a)

and (b), respectively. As can be seen, when the N; is larger than
1000, the distribution of the computed SRDs is relatively invariant
w.r.t. the value of N;. Therefore, in the following experiment, in or-
der to balance the stability and computational efficiency of SRD, N
is set to 1500.

To the best of our knowledge, the proposed SRD is the first de-
scriptor to describe the general relative relations between a pair
of irregular clusters. Therefore, the SRD is compared with the fea-
tures which are also extracted from a pair of clusters. Given a pair
of clusters C; = {pz., i=1,2,..., n;j} and Go={pl.i=1.2,....m}
where n; and n; are the numbers of points in C; and ;. Given a
function F(-) of which the input is a set of points, and the output
is a feature to describe the characteristic of the point set. Define
the features ff‘ and ¥ as

FE=F(CuG) (6)

¥ = D(F(G), F(G)) (7)

In (7), D(f;. fy) = {‘f]’: 7fli” i=1,..., dim(f;)} where the features

f; and fi corresponding to the C; and G, are generated by F(C;)
and F(G), dim(-) is a function to calculate the dimension of a fea-
ture, and f]? and f, represent the ith components in the f; and

fi» Tespectively. The features f{" (equal to ﬁj ) describe the holis-
tic characteristics of the pair of clusters C; and G, fik (equal to

ffj ) represent the differences between C; and G in feature space.
In this paper, the ESF [45], VFH and globally aligned spatial distri-
bution (GASD) [46], which are usually used for object recognition,
are selected to perform the function F(-) and extract the features
ff‘ and fl,j from C; and G,. In the experiment, ff‘ generated by the

ESF is nominated as ESF,, and fik generated by the ESF is nomi-
nated as ESF_. Similarly, the VFH,, VFH_, GASD, and GASD_ are
defined in the same way. Therefore, the SRD is compared with the
ESF,, ESF_, VFH,VFH_, GASD. and GASD_, which are the features
to describe a pair of clusters just like the SRD.

In order to show the distinguishability of SRD comprehen-
sively, we extract the SRD, ESF,, ESF_, VFH,.,VFH_, GASD, and
GASD_ from multiple pairs of clusters in four sequences from
three dataset, i.e. KITTI 00, KITTI 08, Hannover2 and NKU-MC, re-
spectively. From each sequence, 5000 positive samples (the same
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Fig. 5. The influence of the number of random point pairs to the stability of SRD.

Table 1
AUC of the features extracted from a pair of clusters.
ESF. ESF_ VFH. VFH_ GASD. GASD_ SRD
KITTI 00 0.9597 0.7767 0.6468 0.6134 0.8842 0.7351 0.9912
KITTI 08 0.9282 0.8502 0.8397 0.7175 0.9395 0.7873 0.9989
Hannover2 0.9886 0.8822 0.8614 0.8342 0.9037 0.8971 0.9969
NKU-MC 0.9338 0.8586 0.7260 0.7212 0.9129 0.8360 0.9974

pair of clusters from the real world) and 5000 negative samples
(a different pair of clusters) are randomly selected. The Euclidean
distance is used to measure the similarity between the features.
When the Euclidean distance between the features is less than a
threshold the, the features are considered to be extracted from the
same pair of clusters, which are then compared with the ground-
truth. As the changes, a set of the false positive rates (FPRs) and
the true positive rates (TPRs) is computed, and the curve of re-
ceiver operating characteristic (ROC) is drawn to evaluate the dis-
tinguishability of the features. The area under curve (AUC) is the
area enclosed by the ROC curve and the coordinate axis, which
also reflects the distinguishability of the features quantitatively.
The VFH, ESF and GASD are implemented by point cloud library
(PCL) to generate ESF,, ESF_, VFH,,VFH_, GASD, and GASD._. In
the VFH, the radius for calculating the normal vectors is set to
0.05m. The default parameters provided by PCL are used for ESF
and GASD. The ROC curves are shown in Fig. 6, and the AUC is
shown in Table 1.

Compared with the other features, the proposed SRD focuses on
the spatial relations between the clusters, which are usually dis-
tinguishable in real environments. Moreover, since the boundaries
of clusters are considered in the process of extracting SRD, two
pairs of clusters with similar relative distances can also be distin-
guished well by the SRD. As can be seen from the ROC curve and
the AUC for the four sequences, the proposed SRD achieves better
results than the other features. in each sequence, the AUC of SRD
is greater than 0.99, demonstrating that the SRD has high distin-
guishability, and also proving that the SRG constructed by the SRDs
contains sufficient information to distinguish the different places.

4.3. Precision-recall evaluation

To evaluate the P-R performance, our framework is compared
with five state-of-the-art place recognition algorithms, including
the SC [13], M2DP [12], SHOT [22], ESF [45] and VFH [15]. The
SC encodes a whole point cloud into a matrix as the global de-
scriptor. The M2DP is a global descriptor which describes the en-

vironment according to the distribution of point cloud. The SHOT
is a histogram-based local descriptor which encodes the statistics
of normal vectors into a descriptor. The ESF and VFH are the global
descriptors which are also based on histograms. For the implemen-
tation of the SC and M2DP, we use the open-source MATLAB code
released by the authors. As for the SHOT, ESF and VFH, a C++ ver-
sion implemented in the PCL is used. The M2DP and ESF use the
default parameters given by their authors. And for the SC, a sub-
descriptor called key ring is required for K-nearest-neighbor search,
and thus the number of neighbors Kg- is an important parameter
of the SC. According to [13], we choose Ksc = 10 and Ky = 50 in
the SC, respectively, which are denoted by SC-10 and SC-50. The
radius for calculating the normal vectors in the SHOT and VFH is
set to 0.05 m. For the parameters of our framework, the candidate
frame Kgpg is selected as 25, o and o, in the L-LMM are set to
0.03 and 0.08, respectively.

The P-R curves for the six methods are shown in Fig. 7. It
can be seen that our framework outperforms the other five algo-
rithms in all the sequences. Specifically, the SHOT, ESF and VFH
have poor performance in all sequences, because they are based
on histograms and can hardly distinguish the places with similar
structures. The SC and M2DP achieve outstanding results in the
most sequences, but they perform poorly in the Hannover2 and
KITTIOS, respectively. For the Hannover2, due to the limited range
of SICK LMS, which makes the point clouds in the Hannover2 con-
tain less environmental information than the other datasets, the
results of the comparison algorithms are all not outstanding in this
dataset. In contrast, the proposed framework achieves good results
in the Hannover2, because the high distinguishability of the SRD
can remedy the defect caused by insufficient information. More-
over, for KITTI 08, the robot revisits the same place from different
directions when collecting the data. As a result, the M2DP fails to
perform the place recognition in the KITTI 08. The reason is that
the M2DP depends on the distribution of point cloud to perform
place recognition, it cannot keep stable when the viewpoint of the
robot changes. In contrast, the proposed framework also achieves
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Fig. 6. The ROC curves of the SRD and the comparison features in (a) KITTI 00, (b) KITTI 08, (c) Hannover2 and (d) NKU-MC, respectively.

Table 2
Recall at 100% precision in each evaluation sequence.
SC-50 SC-10 M2DP SHOT VFH ESF Ours

KITTI 00 0.8444 08580 0.8641 0.8335 0.1261  0.0147 0.9119
KITTI 05 0.8677 0.8424 0.6304 0.7254 0.2943 0.0468  0.7992
KITTI 06 09333 09398 09188 0.7601 0.3875 0.1070  0.9815
KITTI 07 03918 03299 0.2404 0.5342 0.1146  0.0312  0.7396
KITTI 08 03276 03267 0.2005 O 0 0.0074  0.3614
Hannover2 0 0 0.0801  0.0941 0.0329 0.1202  0.5017
NKU-MC 0.2927 03122 01293 0.1972 0.0861 0.0167  0.5333

good results in the KITTI 08, because our framework is based on
the graph matching which is robust to the viewpoint of robot.
The results in terms of the recall at 100% precision are listed
in Table 2. Our framework achieves the best results on six se-
quences, and the recalls on the KITTI 07, Hannover2 and NKU-
MC are 20.54%, 40.05% and 22.11% better than the second-best
method, respectively. These quantitative results demonstrate that
our framework guarantees high recall with no misrecognition. In
addition, the maximum F1-scores for the methods listed in Table 3,
and the F1-score is calculated by
F1=2.pr-rc/(pr+rc) (8)

where pr and rc represent the precision and recall. For the maxi-
mum F1-scores, our framework also achieves the best results in all

10

sequences, which further proves the superiority of the presented
framework.

Fig. 8 shows the qualitative visualization of the proposed
method corresponding to the recall at 100% precision, where the
true positives are marked by red and the false negatives by black.
In the KITTI 00, 05, 06, 07 and NKU-MC sequences, our frame-
work recognizes most of places correctly, demonstrating that our
framework performs well in most scenarios. In the KITTI 08 and
Hannover2, though there exist some false negatives, the robot still
keeps retrieving the true positives along the trajectory, which pro-
vides frequently detected loop closures for the localization and
mapping.

Moreover, it is worth pointing out that our framework obvi-
ously outperforms the comparison methods in the environments



Y. Gong, F. Sun, J. Yuan et al.

containing multiple similar places (e.g., KITTI 07). Because in our
framework, the relative spatial relations between the clusters are
fully exploited which makes the places with similar structures dis-
tinguishable from each other. For example, the scans of frame 796
and frame 846 in KITTI 07 are collected at different places marked
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in Fig. 9(a). The two frames of data were collected on a narrow
street with abundant parked vehicles, the appearances and struc-
tures of the two frames are similar to each other, which is very
challenging for distinguishing the different places, as can be seen
in Fig. 9(b). In our framework, the differences between the two
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Fig. 7. The P-R curve for each evaluation sequence. Fig. 7(a), (b), (c), (d), (e), (f) and (g) show P-R curves in KITTI 00, KITTI 05, KITTI 06, KITTI 07, KITTI 08, Hannover2 and
NKU-MC, respectively.
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Table 3
Maximum F1-scores in each evaluation sequence.
SC-50 SC-10 M2DP SHOT VFH ESF Ours
KITTI 00 0.9459  0.9347 0.9335 0.9332 0.6454 0.5025 0.9543
KITTI 05 0.9408 0.9363 0.8000 0.8856 0.6125 0.4939  0.9481
KITTI 06 0.9655 0.9690 0.9704 0.8928 0.7566  0.5675  0.9907
KITTI 07 0.6769  0.6178 0.4194 0.6939 0.4490 0.3953 0.8670
KITTI 08 0.5886  0.5856  0.0174 0.4688  0.0540 0.3483  0.7519
Hannover2  0.5120 0.4498 0.4920 0.6606 0.6747 0.7638  0.7665
NKU-MC 0.7613  0.7365 0.2648 0.5556  0.3570 0.3324  0.7806
10 } ° 1
(a) KITTI 00 (b) KITTI 05 (c) KITTI 06 (d) KITTI 07
EZ — | : ; ; , il z !
(e) KITTI 08 (f) Hannover2 (g) NKU-MC

Fig. 8. Qualitative performance visualization of our framework at 100% precision (0 false positives) along the trajectory. The true positives are marked by red, the false
negatives are marked by black and the true negatives are marked by blue. (For interpretation of the references to colour in this figure legend, the reader is referred to the

web version of this article.)

frames can be described by the relative spatial relations between
the segmented clusters, as is illustrated in Fig. 9(c), which makes
the presented framework perform place recognition correctly.

In order to further show the P-R performance of our frame-
work, two state-of-the-art algorithms, i.e., SG [35] and Locus [36],
are compared with our framework. In SG, the point clouds are
segemted by a semantic segmentation method and the places are
represented by the semantic graphs. Then, the similarities between
the graphs are estimated by a SimGNN-based network. The Locus
segments the point cloud and extracts the segment features by a
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3D CNN. Both the segment features and the topological informa-
tion related to the segments are encoded into a global descriptor
to evaluate the similarities between two places. In the experiment,
the same experimental setup and data sequences are used as in
[36] and [35], and the comparison results in term of the maxi-
mum F1-score are listed in Table 4, where the results of SG and
Locus are reported in [35] and [36], respectively. Our framework
achieves the best results on most sequences. For the average maxi-
mum F1-scores on the six sequences, our framework performs 4.0%
better than the second-best method. It is worth pointing out that
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55.87m

- >

(a) (b)

(©)

Fig. 9. The illustration of the recognition process at frame 796 and frame 846 in KITTI 07. (a) The locations of the vehicle with the LiDAR sensor at the two frames,
respectively, are marked in the map, and the distance between the two loactions is 55.87 m. (b) The images and point clouds taken at the two loactions, respectively. And
the appearances and structures of the two places are extremely similar. (c) The clusters generated by the segmentation method. The differences between the two frames
can be identified by analyzing the spatial relations between the segmented clusters. For example, (D) there is no object in the same relative position of a car. @ There is an
object with different shapes in the same relative position of a car. 3 Although the shapes of the cars are similar, their relative spatial relations are different.

Table 4
Maximum F1-scores in each evaluation sequence.
KITTI00  KITTI 02  KITTI 05  KITTI06  KITTI 07  KITTI 08  Mean
SG-RN  0.960 0.859 0.897 0.944 0.984 0.783 0.904
SG-SK 0.969 0.891 0.905 0.971 0.967 0.900 0.934
locus 0.983 0.762 0.981 0.992 1.0 0.931 0.942
Ours 0.995 0.943 0.994 1.0 0.993 0.966 0.982
Table 5 Table 6
Retrieval recall with different SRG ordering in BoW tree. Average retrieval time with different SRG ordering in BoW tree (ms).
KITTI 06 ~ KITTI 07  Hannover2  NKU-MC KITTI 06 ~ KITTI 07  Hannover2  NKU-MC
Positive Order 1.0 0.9896 0.9100 09111 Positive Order  4.235 4.559 2.744 4.228
Reverse Order 1.0 0.9896 0.9192 0.9067 Reverse Order  4.314 4.348 2.812 4.167

both the SG and Locus require a complex offline training process.
In comparison, our framework does not need offline training and
all the steps can be run without any priori information of the en-
vironment.

In addition, the proposed framework can ensure reasonable
calculation efficiency. The runtimes of the description phase and
searching phase of our framework are computed on the KITTI 00,
which are 0.2124s and 0.2355s on average, respectively. Therefore,
the place recognition performed by our framework can be run in
real-time at approximately 2-3 Hz.

4.4. Evaluation on robustness of U-LSM against SRG ordering

To demonstrate that the impact of SRG ordering on the U-LSM
is not significant, we experimentally verify the influence on the
SRG ordering on retrieval performance and retrieval time of the in-
cremental BoW tree. The experimental setups and the parameters
of our framework are the same as those in the P-R experiment in
Section 4.3. For the parameters of the U-LSM, the number of re-
trievals Ksgg is set to 25. The retrieval performance is evaluated by
the retrieval recall of the U-LSM. In order to analyze the influence
of the SRG ordering on the retrieval performance, the SRGs are in-
putted into the tree in positive order and in reverse order, respec-
tively. The recalls of retrieval are calculated and compared on four
sequences KITTI 06, KITTI 07, Hannover2 and NKU-MC from three
datasets, respectively, as shown in Table 5. It can be seen that, on
the same sequences, the retrieval recalls of BoW tree are approx-
imative for different ordering of SRGs. Especially for the KITTI 06
and 07, the retrieval recalls are equal for the positive and reverse
order. The results demonstrate that the retrieval performance of
BoW tree is hardly impacted by the SRG ordering.
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Table 7
Recall at 100% precision when the viewpoint
change of robot is greater than 30°.

KITTI 00  KITTI 05  KITTI 08
M2DP  0.05333 0 0
SC-50  0.34722 0.51563 0.33838
SC-10  0.28070 0.54688 0.33333
ESF 0 0.01563 0.00754
VFH 0 0 0
SHOT 0.01333 0.15625 0.19849
Ours 0.65333 0.59375  0.36432

Similarly, for the influence of the SRG ordering on the retrieval
time of the incremental BoW tree, the SRGs are inputted into the
tree in positive and reverse order, respectively. The time consump-
tion of retrieval are compared on the sequences KITTI 06, KITTI 07,
Hannover2 and NKU-MC, respectively, as shown in Table 6.

4.5. Evaluation on robustness against viewpoint

When a place is revisited by the robot from a different view-
point, the spatial distribution of the point cloud may change sig-
nificantly, which is substantially challenging for the place recog-
nition. However, our framework benefits from the graph matching
which is robust against changes in viewpoint. Hence, the changes
of viewpoint have less negative impact on our framework. In se-
quences KITTI 00, 05 and 08, there are multiple places that are re-
visited by the robot from different viewpoints. The recall at 100%
precision on the three sequences are calculated when the robot re-
visits a place with a viewpoint change larger than 30°. As shown in
Table 7, compared with other algorithms, our framework achieves
the highest recall at 100% precision, demonstrating that our frame-
work achieves high viewpoint robustness.
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5. Conclusion

This paper has proposed a two-level framework for 3D LiDAR
place recognition based on the SRG that captures the spatial re-
lations between clusters segmented from the environments. First,
the effective ground removal and segmentation methods have been
applied to segment the point cloud into multiple independent clus-
ters. Then, the SRDs between the clusters have been extracted and
the point cloud is represented by the SRG to describe the environ-
ment. Finally, two effective models have been fused into a two-
level model for matching the SRGs. In the U-LSM, an incremental
BoW model is utilized to quickly search the candidates through the
distribution of the SRDs in the SRG, and then the improved spec-
tral method is used to calculate the similarities between the cur-
rent SRG and the candidates in the L-LMM. The two models have
a bi-directional information exchange, which improves the perfor-
mance of the overall model. Extensive experiments have been con-
ducted on both the public datasets and the self-built dataset. The
results demonstrate that the SRGs contains sufficient information
to describe the environments and the proposed framework per-
forms place recognition with high precision, recall and viewpoint
robustness.
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