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a b s t r a c t 

In the field of robotics, due to the complexity of real environments, place recognition using the 3D LiDAR 

is always a challenging problem. The spatial relations of internal structures underlying the LiDAR data 

from different places are distinguishable, which can be used to describe the environment. In this paper, 

we utilize the spatial relations of internal structures and propose a two-level framework for 3D LiDAR 

place recognition based on the spatial relation graph (SRG). At first, the proposed framework segments 

the point cloud into multiple clusters, then the features of the clusters and the spatial relation descriptors 

(SRDs) between the clusters are extracted, and the point cloud is represented by the SRG, which uses the 

clusters as the nodes and their spatial relations as the edges. After that, we propose a two-level matching 

model in which two different models are fused for accurately and efficiently matching the SRGs, including 

the upper-level searching model (U-LSM) and lower-level matching model (L-LMM). In the U-LSM, an 

incremental bag-of-words model is used to search for candidate SRGs through the distribution of the 

SRDs in the SRG. In the L-LMM, we utilize the improved spectral method to calculate similarities between 

the current SRG and the candidates. The experimental results demonstrate that our framework achieves 

good precision, recall and viewpoint robustness on both public benchmarks and self-built campus dataset. 

© 2021 Elsevier Ltd. All rights reserved. 
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. Introduction 

Place recognition is a fundamental and critical problem of pat- 

ern recognition in the field of robotics. An intelligent robot should 

ave the ability to recognize the place where it is currently located, 

o as to complete the task of navigation. Meanwhile, place recog- 

ition can also be used for loop closure detection in simultaneous 

ocalization and mapping (SLAM) [1–3] . Long-term SLAM in large- 

cale environments cannot avoid error accumulation, which makes 

he mapping results inconsistent. In this situation, the place recog- 

ition method can be utilized to detect the loop closure which is 

 prerequisite for eliminating accumulated error. 

In recent years, with the development of computer vision tech- 

ology, image-based place recognition has achieved excellent re- 

ults [4–7] . However, images are sensitive to illumination and the 

iewpoint of camera. Hence, image-based place recognition may 
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ail in some challenging situations such as the dark environments. 

he 3D LiDAR can directly obtain the geometric information of 

he environments with high precision. Compared with the camera, 

he 3D LiDAR has a wider field of view and is hardly affected by 

he illumination changes. Therefore, considerable methods on place 

ecognition have been proposed using the 3D LiDAR [8–13] . 

Inspired by the methods of image retrieval, the traditional 

ethods of place recognition with 3D LiDAR detect the key points 

nd extract the local descriptors from the LiDAR data to describe 

he environment [8,14] . In order to improve the efficiency of place 

ecognition, some methods utilize the overall distribution of point 

louds captured by the LiDAR to extract global descriptors and 

erform place recognition by measuring the similarities between 

he global descriptors [12,15] . In recent years, some segmentation- 

ased methods have been proposed, which segment the LiDAR 

ata into multiple clusters, extract the feature from each clutser, 

nd perform place recognition by matching these segmented clus- 

ers [16,17] . 

However, compared with the feature of cluster, the spatial rela- 

ions between the clusters have not been fully utilized on place 

ecognition. In this paper, we propose a two-level framework 

hich utilizes both the shape characteristics of clusters and the 

patial relations between the clusters to perform place recognition. 

https://doi.org/10.1016/j.patcog.2021.108171
http://www.ScienceDirect.com
http://www.elsevier.com/locate/patcog
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he proposed framework contains two phases, i.e., description and 

earching . In the description phase, the spatial relation descriptor 

SRD) is proposed to encode the relative spatial relations between 

 pair of clusters. Then, the environment is described by the spa- 

ial relation graph (SRG), which takes the clusters as the nodes, 

he features of clusters as the node attributes (describing the shape 

haracteristics of clusters), the relative relations between the clus- 

ers as the edges, and the SRDs as the edge attributes. Meanwhile, 

 two-level matching model including the upper-level searching 

odel (U-LSM) and the lower-level matching model (L-LMM), is 

roposed to perform a coarse-to-fine matching of the SRGs. In the 

-LSM, an incremental BoW model without offline training is used 

o quickly search the candidate SRGs from historical data. In the 

-LMM, the spectral method is improved for calculating the simi- 

arities between the SRGs. The contributions of the paper are sum- 

arized as follows. 

• The proposed framework pays attention to the relative spatial 

relations between the segmented clusters in the LiDAR data. 

The SRD is proposed to encode the relative spatial relation be- 

tween a pair of clusters with high distinguishability. Moreover, 

the SRD does not make any prior assumptions about the models 

of clusters, it can describe the general spatial relation between 

the clusters with irregular shape. 
• In the proposed framework, the SRG is proposed to describe 

the environment, which contains different types of descriptive 

information (nodes and edges) and organizes them effectively 

into a unified representation. Moreover, a novel two-level graph 

matching model is proposed to match the SRGs, which can ac- 

curately and efficiently search for the similar SRGs from histori- 

cal data and calculate the similarities between SRGs. It is worth 

pointing out that the whole process does not require an offline 

pre-training process. 
• Comprehensive experiments are carried out on multiple 

datasets such as KITTI, Hannover2 and self-built campus 

dataset, demonstrating that the proposed SRD is distinguishable 

and our framework can achieve good results in precision, recall 

and viewpoint robustness. 

The rest of paper is organized as below. The related works 

re presented in the Section 2 . In Section 3 , we give a detailed

escription for the proposed framework. Extensive experimental 

valuations are shown in Section 4 . Conclusions are presented in 

ection 5 . 

. Related work 

Generally, place recognition methods using the 3D LiDAR are 

ivided into four types including scan-matching-based methods, 

ocal descriptor-based methods, global descriptor-based methods 

nd segmentation-based methods. The scan-matching-based meth- 

ds [18,19] align a pair of point clouds through iterative calcu- 

ation. The most representative scan-matching-based methods are 

he iterative closest points (ICP) [18] and its variations, such as the 

oint-to-line ICP (PLICP) [19] . However, the scan-matching-based 

ethods may fail without the initial transformation between two 

cans, which limits its applications in the real scenes. 

The local descriptor-based methods [8,20–26] perform the place 

ecognition through matching the local descriptors extracted from 

he key points in the point cloud. In the point feature histogram 

PFH) [20] , the geometric information in the neighborhood of a 

ey point was encoded to a histogram, then the place recognition 

as performed by matching the key points with similar PFHs. The 

ast point feature histogram (FPFH) [21] improved the efficiency of 

FH by reordering the data and caching previously computed val- 

es, while retaining most of the descriptive ability of the PFH. The 

HOT [22] generated the local descriptor by counting the normal 
2 
ectors in the neighborhood of a key point. The ISHOT [23] added 

he laser intensity to the SHOT for enhancing the descriptive abil- 

ty. In [24] and [25] , the point clouds were converted into bearing 

ngle images, and then SURFs [27] and ORBs [28] were extracted 

o describe the environments, respectively. Similarly, in [26] , the 

oint clouds were converted into the range images, and the lo- 

al descriptors were extracted based on the Laplacian of Gaussian 

LoG) method. The work of [8] extended the method in [26] and 

ombined the Normal-Aligned Radial Features (NARFs) extracted 

rom the range images and the bag-of-words (BoW) model to per- 

orm the place recognition. Generally, the recognition ability of lo- 

al descriptor-based methods depends on the number of key points 

ubstantially, which makes it difficult to balance the recognition 

ccuracy and efficiency. 

The global descriptor-based methods [9–13,15] extract global 

escriptors from a whole point cloud and perform place recog- 

ition by measuring the similarities between the global descrip- 

ors. For example, the viewpoint feature histogram (VFH) [15] ex- 

ended the FPFH for the entire point cloud and computed statis- 

ics between the viewpoint and the normal vectors estimated at 

ach point. Since the viewpoint is encoded into the descriptor, the 

FH is not suitable for the situation with changing viewpoint. The 

2DP [12] used the distribution of the point cloud projected to 

ultiple planes to extract global descriptors, which makes it effi- 

ient to be extracted. However, the viewpoint robustness of M2DP 

s also not outstanding because the distribution of the point cloud 

ill change with the change of viewpoint. The scan context (SC) 

13] calculated a global descriptor by dividing the point cloud into 

ultiple bins from the top view and encoding the max height of 

he points in each bin into a matrix. The SC method can achieve 

avorable performance on place recognition under the planar mo- 

ion of the robot. However, if the z-axis of the sensor frame is not 

nvariant w.r.t. the global coordinate system, the SC method can- 

ot obtain good results. In recent years, due to the rapid develop- 

ent of deep learning, some researches have utilized deep learn- 

ng methods to generate global descriptors for the 3D LiDAR place 

ecognition [29] . PointNetVLAD [9] used deep learning to perform 

arge-scale 3D LiDAR place recognition for the first time. SeqLPD 

10] extended the PointNetVLAD by adopting a coarse-to-fine se- 

uence matching strategy. In [11] , the point clouds were converted 

nto range images and a convolutional neural network (CNN) was 

sed to extract the global descriptors. OverlapNet [30] utilized a 

eep neural network to provide overlap area and relative yaw an- 

le estimates between two LiDAR scans, and further performed 

oop closure detection in a SLAM system. In DiSCO [31] , a CNN- 

ased network architecture was proposed to extract global descrip- 

ors with rotation invariance. Meanwhile, a differentiable phase 

orrelation estimator is proposed for relative orientation estima- 

ion between two scans. The aforementioned deep learning-based 

ethods require sufficient data and time for pre-training, which 

imits its application in unknown scenes. 

The segmentation-based methods [16,17,32–36] segment the 

oint cloud into several local areas, such as planar patches, line 

egments or irregular clusters, and then perform the place recog- 

ition according to the descriptors of local areas or the relations 

etween the local areas. In [32] , the planes were segmented from 

he point cloud, and the geometric relations between neighbouring 

lanar patches are extracted to describe the environments. Simi- 

arly, both the plane surfaces and line segments were segmented 

o describe the environment in [33] , and then a robust proba- 

ilistic method for selecting the best pose hypothesis was used 

o match overlapping point clouds. However, the methods in both 

32] and [33] require structured or semi-structured scenes to seg- 

ent the plane patches or line segments stably. In [34] , the ob- 

ects were segmented from the point cloud, and the place recogni- 

ion was performed by comparing the objects from the new places 
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Fig. 1. System overview. 
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gainst the existing objects. This method can only work well with 

 small number of objects in small scale environments. The Seg- 

atch [16] [17] segmented the point cloud into multiple irregular 

lusters to describe the environment and performed place recog- 

ition according to the similarities of these clusters. Nevertheless, 

n the Segmatch, a classifier with offline training is required to de- 

ermine whether the clusters represent the same object. Moreover, 

he real environments may contain clusters that are extremely sim- 

lar in shape, which makes it difficult to build correspondences 

nly through the similarities between the clusters. In [35] , a se- 

antic graph (SG) representation for 3D point cloud scenes was 

resented, which captured semantic information and topological 

elations between objects. And a graph similarity network was pro- 

osed for the matching of semantic graphs. In Locus [36] , after seg- 

entation, the segment features extracted by a 3D CNN, and then 

he topological and temporal information related to the segments 

ere aggregated by second-order pooling to obtain a global de- 

criptor of the point cloud. The aforementioned two methods take 

he relations between segments into account, and achieve good 

erformance in KITTI dataset. However, the SG relies heavily on the 

esults of semantic segmentation, which severely limits the appli- 

ation of the algorithm in diverse environments. Similarly, in Lo- 

us, the 3D CNN also needs to be well trained in advance to get 

he effective feature for each segment. 

. Two-level place recognition framework 

In this section, we present the details of the proposed two- 

evel framework for place recognition using 3D LiDAR. First, the 

verview of our framework is introduced in Section 3.1 , which 

llustrates the overall process of the proposed framework. Then, 

e present the extraction of SRD and the construction of SRG in 

ection 3.2 . Finally, the two-level matching model is presented in 

ection 3.3 , which fuses two different models to match the SRG 

ccurately and efficiently. 

.1. Overview of framework 

Our framework is mainly divided into two phases, including the 

escription and searching . In the description phase, the point clouds 

re represented by the SRGs to describe the environments. In the 

earching phase, the SRGs are used to search for the similar SRGs 

nd determine whether the corresponding data are collected from 

he same place. The system overview is shown in Fig. 1 where the 

otations are listed below. 
3 
N The set of nodes in SRG 

F N The set of node attributes in SRG 

E The set of edges in SRG 

F E The set of edge attributes in SRG 

�c The set of segmented clusters 

τg / τr Growth / Repression factor 

�I The set of the candidate SRGs 

Specifically, for the description phase, the Euclidean clustering 

ethod is utilized to segment a point cloud into a set of clusters 

c , and for each cluster, the shape feature is extracted to describe 

he shape of cluster. Then, the clusters are taken as the nodes of 

he SRG, and the shape features of clusters are taken as node at- 

ributes of the SRG, yielding the set of nodes N and the set of node 

ttributes F N , respectively. Meanwhile, the edges of the SRG are de- 

ned by the relative spatial relations between clusters and the cor- 

esponding edge attributes are the extracted SRDs, yielding the set 

f edges E and the set of edge attributes F E , respectively. Finally, 

he SRG is constructed by N, E, F N and F E together. 

For the searching phase, the constructed SRG is fed into the U- 

SM to search for the similar SRGs from the historical data, which 

s based on an established incremental BoW tree and outputs the 

et of candidates �I . Then, the candidates �I are fed into the 

-LMM which utilizes the spectral method to calculate the simi- 

arities between the current SRG and the candidates, respectively. 

inally, according to the similarities, our framework determines 

hether the scans are collected from the same places. In addition, 

 feedback mechanism is applied to improve the searching ability 

f the U-LSM. Specifically, after receiving the candidates provided 

y the U-LSM, the growth factor τg or repression factor τr are cal- 

ulated in the L-LMM according to the situations of SRG matching. 

hen, τg and τr are fed back from the L-LMM to the U-LSM, and 

he parameters of U-LSM are adjusted adaptively according to τg 

nd τr , which make the candidates given by the U-LSM more ac- 

urate in the future search. 

.2. Construction of SRG 

.2.1. Point cloud segmentation 

Before the segmentation of a point cloud, ground removal is a 

ecessary step to make the clusters separated from each other. We 

dopt the fast segmentation algorithm [37] to efficiently remove 

he ground in the point cloud. The plane parameters of the ground 

re fitted heuristically, and then the ground is removed according 

o the plane parameters. After ground removal, the Euclidean clus- 
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Fig. 2. The visualization of the segmentation results. Fig. 2 (a) shows the point cloud before the segmentation, and Fig. 2 (b) shows the point cloud after the segmentation, in 

which the different clusters are shown in different colors. 
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ering method provided by PCL 1 is used to segment the point cloud 

nto multiple clusters. In order to improve efficiency, 3D grids are 

stablished in the space of point cloud, and then the clusters are 

btained by clustering the grids and their internal points based on 

he Euclidean distances. Fig. 2 shows the visualization of segment- 

ng a point cloud captured by the 3D LiDAR. As can be seen, the 

uclidean clustering method provided an effective result of seg- 

entation. Specifically, after the segmentation, the ground points 

nd scattered points far away from the laser transmitter are re- 

oved, while remaining the clusters which can retain the charac- 

eristics of the environment. 

.2.2. Spatial relation descriptor 

In real environments, especially in outdoor scenes, the relative 

patial relations between the segmented clusters are distinguish- 

ble. Moreover, compared with the camera, the 3D LiDAR can ob- 

ain geometric information in the environment with a wide field 

f view and high precision, which is convenient for extracting the 

elative spatial relations. In this section, the SRD is proposed to 

ncode the relative spatial relations between clusters. The compu- 

ation of the SRD includes two steps, i.e., the relational unit extrac- 

ion and relational unit encoding. 
1 http://pointclouds.org 

⎨
⎪⎩

4 
A relational unit can be defined for any pair of points from two 

ifferent clusters. A relational unit contains three components l 1 , l 2 
nd θ , which represent the sum of distances from the points to the 

oundaries of the corresponding clusters, the distance between the 

oundaries of the clusters and the angle between the line connect- 

ng the two points and the line connecting two centroids of the 

lusters, respectively. The relational unit extraction is illustrated in 

ig. 3 . For a pair of clusters C j and C k , their centroids are denoted

y p c 
j 

and p c 
k 
, respectively. The direction vector from p c 

j 
to p c 

k 
is de-

oted by v . Then, for a pair of points p r 
j 

and p r 
k 
, which are any pair

f points from C j and C k , respectively, the direction vector from p r 
j 

o p r 
k 

is denoted by μ. Next, we calculate the intersection points p b 
j 

nd p b 
k 

between the line segment p r 
j 
p r 

k 
and the outer boundaries of 

 j and C k , respectively. We define the distance between p r 
j 

and p b 
j 

s d 1 , and the distance between p b 
j 

and p b 
k 

as d 2 , the distance be-

ween p r 
k 

and p b 
k 

as d 3 , and the angle between μ and v as ω. The

elational unit r u = R u 
(

p r 
l 
, p r 

k 

)
= { l 1 , l 2 , θ} can be calculated by 

 

 

 

 

 

l 1 = d 1 + d 3 
l 2 = d 2 

θ = 

{
ω i f ω ≤ 90 

◦

180 

◦ − ω otherwise 

(1) 

http://pointclouds.org
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Fig. 3. Diagram of the relational unit extraction. 
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In the implementation, a grid-based method is designed to cal- 

ulate d 1 and d 3 efficiently. First, the maximum and minimum co- 

rdinates of the clusters in the x , y and z directions are calculated 

o measure the scope of the cluster. Then, the space is equally di- 

ided into 64 × 64 × 64 grids according to the scope of the cluster. 

 grid cell is called occupied cell if it contains LiDAR points, and 

mpty cell otherwise. Therefore, it is easy to find the farthest oc- 

upied cell from p r 
j 

along the direction of μ in C j , and then we

alculate the distance between p r 
j 

and the center of this occupied 

ell as d 1 . Similarly, d 3 is calculated by the same way. Next, d 2 is

btained by subtracting d 1 , d 3 from the distance between the p r 
j 

nd p r 
k 
. 

It is worth pointing out that, in the relational unit, l 1 and l 2 
easure the relative shape and distance between two clusters, and 

measures the relative orientation between two clusters. More- 

ver, in the extraction of relational unit, the boundary information 

f the clusters is fused into the computation of l 1 and l 2 , which

akes the relational unit sensitive to the shape of the cluster and 

ncreases the distinguishability of SRD encoded by the relational 

nit. In addition, three principles are followed to extract the SRD 

nd the relational units, i.e., the symmetry, viewpoint robustness 

nd shape sensitivity. The symmetry means that the SRD extracted 

orm C j to C k should be completely consistent with the SRD from 

 k to C j . Hence, l 1 is defined by d 1 + d 3 in the relational unit to

uarantee the symmetry. The viewpoint robustness means that the 

egative impact of viewpoint changes should be reduced in the ex- 

raction process of the SRD. Therefore, the relational unit does not 

ontain components directly related to the viewpoint of robot. The 

hape sensitivity refers that SRDs extracted from clusters with dif- 

erent shapes should be distinguishable, for this reason, the bound- 

ry points p b 
j 

and p b 
k 

are selected to calculate the relational units, 

o as to fit the outer contours between the two clusters. 

For the relational unit encoding, given a pair of clusters C j and 

 k , N r pairs of points are randomly selected from a pair of clus- 

ers, denoted by {{ p i 
j 
, p i 

k 
} , i = 1 , . . . , N r | p i j ∈ C j , p 

i 
k 

∈ C k } . And the re-

ational unit corresponding to each pair of points is extracted, gen- 

rating the corresponding set of relational units, denoted by { r i u = 

 u (p i 
j 
, p i 

k 
) = { l i 

1 
, l i 

2 
, θ i } , i = 1 , . . . , N r } . Then, the encoding method in

38] is applied to encode the relational units into a descriptor 

o

5 
alled SRD, which utilizes the statistical information of the N r re- 

ational units to encode the relative relations from different cluster 

airs into a descriptor. The method in [38] is sensitive to the value 

n the relational units and does not require the prior knowledge of 

he distribution of the relational units. 

Specifically, we first split the space of relational unit into dis- 

rete cells along each dimension and l 1 , l 2 and θ are divided into 

he cells according to their values. Then, for each element in the 

elational unit, two weights are calculated according to the dis- 

ances of value to the upper and lower boundary of the cells. 

herefore, for three elements, there are a total of eight ( 2 3 ) combi-

ations of weights. Then, the result of multiplying the weights of 

he corresponding combination is added to an element of the SRD 

nd the index of the element can be obtained by the indices of 

he cells along each dimension. The encoding method of the rela- 

ional units is different from the work [38] by the variables and the 

alue range of variables. The specific encoding process is shown in 

lgorithm 1 . 

.2.3. Spatial relation graph 

The SRG is a complete graph, represented by G s = { N, E, F N , F E } ,
here N is the set of nodes, E is the set of edges, F N is the set

f node attributes and F E is the set of edge attributes. The node 

ttribute is defined by f n = { f l , f p , f s , f a } , where f l , f p , f s and f a 

uantify the linearity, planarity, scattering and anisotropy of the 

luster, respectively, which are calculated by 
 

 

 

 

 

f l = ( λ1 − λ2 ) /λ1 

f p = ( λ2 − λ3 ) /λ1 

f s = λ3 /λ1 

f a = ( λ1 − λ3 ) /λ1 

(2) 

here λ1 , λ2 and λ3 are three eigenvalues of the covariance ma- 

rix M c of the points in the cluster, which satisfy λ1 , λ2 , λ3 ∈ R and

1 ≥ λ2 ≥ λ3 ≥ 0 . The feature f n describes the shape characteristics 

f the clusters to distinguish from each other and the extraction of 

f n is efficient, because the eigen decomposition of 3 × 3 matrix can 

e performed very quickly. 

The edge attribute of the SRG is denoted by f e , and the SRDs are

dopted as the edge attributes f e . Although f n and f e are two types 

f feature which have different meanings and dimensions, the SRG 
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Algorithm 1 Relational unit encoding. 

Input: The set of relational units �r = { r i u | i = 1 , 2 , . . . , n } , r i u = 

{ l i 
1 
, l i 

2 
, θ i } 

Output: SRD D s 

1: Set the value range of the relational units 
[
l min 
1 , l max 

1 

]
, [

l min 
2 , l max 

2 

]
and 

[
θmin , θmax 

]
to [ 0 , 10 ] , [ 0 , 40 ] and [ 0 , 10 π/ 180 ] , 

respectively. 

2: Set the number of interval divisions ηl 1 
, ηl 2 

and ηθ to 4, 4 and 

4, respectively. 

3: Initialize the SRD D s ∈ R 

(
ηl 1 

+1 

)
·
(
ηl 2 

+1 

)
·( ηθ +1 ) 

4: for i = 1 , 2 , . . . , n do 

5: k l 1 = 

⌊(
l i 
1 

− l min 
1 

)
ηl 1 

/ 
(
l max 
1 

− l min 
1 

)⌋
6: k l 2 = 

⌊(
l i 
2 

− l min 
2 

)
ηl 2 

/ 
(
l max 
2 

− l min 
2 

)⌋
7: k θ = 

⌊(
θ i − θmin 

)
ηθ / 

(
θmax − θmin 

)⌋
8: ω l 1 

= 

(
l i 
1 

− l min 
1 

)
ηl 1 

/ 
(
l max 
1 

− l min 
1 

)
− k l 1 , ω 

′ 
l 1 

= 1 − ω l 1 

9: ω l 2 
= 

(
l i 
2 

− l min 
2 

)
ηl 2 

/ 
(
l max 
2 

− l min 
2 

)
− k l 2 , ω 

′ 
l 2 

= 1 − ω l 2 

10: ω θ = 

(
θ i − θmin 

)
ηθ / 

(
θmax − θmin 

)
− k θ , ω 

′ 
θ

= 1 − ω θ

11: D s 

[
k l 1 ·

(
ηl 2 

+ 1 
)
( ηθ + 1 ) + k l 2 · ( ηθ + 1 ) + k θ

]
+ = ω 

′ 
l 1 
ω 

′ 
l 2 
ω 

′ 
θ

12: D s 

[
k l 1 ·

(
ηl 2 

+ 1 
)
( ηθ + 1 ) + k l 2 · ( ηθ + 1 ) + ( k θ + 1 ) 

]
+ = 

ω 

′ 
l 1 
ω 

′ 
l 2 
ω θ

13: D s 

[
k l 1 ·

(
ηl 2 

+ 1 
)
( ηθ + 1 ) + 

(
k l 2 + 1 

)
· ( ηθ + 1 ) + k θ

]
+ = 

ω 

′ 
l 1 
ω l 2 

ω 

′ 
θ

14: D s 

[
k l 1 ·

(
ηl 2 

+ 1 
)
( ηθ + 1 ) + 

(
k l 2 + 1 

)
· ( ηθ + 1 ) + ( k θ + 1 ) 

]
+ = 

ω 

′ 
l 1 
ω l 2 

ω θ

15: D s 

[(
k l 1 + 1 

)
·
(
ηl 2 

+ 1 
)
( ηθ + 1 ) + k l 2 · ( ηθ + 1 ) + k θ

]
+ = 

ω l 1 
ω 

′ 
l 2 
ω 

′ 
θ

16: D s 

[(
k l 1 + 1 

)
·
(
ηl 2 

+ 1 
)
( ηθ + 1 ) + k l 2 · ( ηθ + 1 ) + ( k θ + 1 ) 

]
+ = 

ω l 1 
ω 

′ 
l 2 
ω θ

17: D s 

[(
k l 1 + 1 

)
·
(
ηl 2 

+ 1 
)
( ηθ + 1 ) + 

(
k l 2 + 1 

)
· ( ηθ + 1 ) +k θ

]
+ = 

ω l 2 
ω l 2 

ω 

′ 
θ

18: D s 

[(
k l 1 +1 

)
·
(
ηl 2 

+1 
)
( ηθ +1 ) + 

(
k l 2 +1 

)
·( ηθ +1 ) + ( k θ +1 ) 

]
+ = 

ω l 1 
ω l 2 

ω θ

19: end for 
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an organize them effectively, yielding a unified representation to 

escribe the environments. Moreover, the SRG is a complete graph 

nd contains all the relative spatial relations between the clusters 

n one scan. Hence, extensive information is retained in an SRG to 

escribe the environment. 

.3. Two-level matching framework 

To perform the place recognition, the SRGs constructed for dif- 

erent places need to be matched. The most widely used graph 

atching methods are the learning-based methods [39] and the 

ree search methods [40] . The learning-based methods match the 

raphs through a pre-training model, which requires the prior 

nowledge of the graphs, while the tree search method is time- 

onsuming for complete graphs (e.g.,SRGs). To this end, we pro- 

ose a two-level matching model for the SRGs, including the U- 

SM and the L-LMM. In the U-LSM, an incremental BoW model is 

stablished using the SRDs in the SRGs from the historical data, 

nd the SRGs similar to the current SRG are searched out via a fast 

oting strategy as the candidates. Then, in the L-LMM, an improved 

pectral method is used to perform an exact similarity calculation 

etween the current SRG and the candidates obtained from the U- 

SM. In addition, the U-LSM can dynamically adjust its parameters 

hrough the feedback from the L-LMM. Hence, our framework con- 

inuously optimizes its performance while the robot performs the 

lace recognition, yielding both efficiency and high quality. 
6 
.3.1. Upper-level searching model 

As mentioned in Section 3.2.2 , the SRD is used to describe the 

elative relation between a pair of clusters and has powerful dis- 

inguishability. Moreover, the SRG is a complete graph, containing 

ll relative relations between the clusters. Hence, the SRDs in an 

RG contains rich information which can be used to search for the 

imilar SRGs. In this paper, an incremental BoW model without of- 

ine training is used to fit the distribution of SRDs, in which the 

ncremental BoW tree is initialized and maintained by clustering 

he SRDs. Then, the candidates can be searched out by a fast vot- 

ng strategy. In the U-LSM, the incremental BoW model includes 

hree steps, i.e., initialization, updating, and voting. 

For the initialization, a BoW tree is initialized by clustering the 

dge attributes (SRDs) of the first SRG into K BoW 

SRD clusters by K- 

eans, that is, the root node N { root of the BoW tree has K BoW 

chil-

ren, which are the leaf nodes defined by the SRD clusters, and the 

ttributes of leaf nodes are defined by the centers of SRD clusters. 

ccording to the centers of the SRD clusters, the SRDs can retrieve 

he leaf nodes to which they belong using the BoW tree from-top- 

o-bottom. Each leaf node N 

i 
lea f 

has corresponding inverted indexes 

 

i 
in v , to record the SRDs belonging to N 

i 
lea f 

and the SRGs to which

he SRDs belongs. 

The updating process is to realize the incremental update of the 

oW tree. As new SRGs are generated, the SRDs in them are added 

o the inverted indexes of leaf nodes in the BoW tree. As the data 

ncreases, the initial structure of BoW tree cannot fit the new dis- 

ribution of the SRDs. Instead of re-clustering all the SRDs in the 

ree, when the size of the inverted indexes I i 
in v corresponding to 

 

i 
lea f 

is greater than a threshold T h s , the SRDs indexed by I i 
in v are 

e-clustered by K-Means, and K BoW 

new leaf nodes are generated 

s the children of N 

i 
lea f 

, which is called the split of N 

i 
lea f 

. Mean-

hile, the SRDs in I i 
in v are reallocated to the new inverted indexes 

n the new leaf nodes. 

In the voting process, a fast voting strategy is designed to effi- 

iently search for the candidates for an SRG. First, the initial votes 

f historical SRGs are set to 0. For the current SRG G 

c 
s , the set of

dge attributes F c 
E 

is sent into the BoW tree. And for each descrip- 

or f c e in F c 
E 

, the leaf node to which f c e belongs is retrieved from-

op-to-bottom. After that, for every SRG G 

i 
s indexed by the corre- 

ponding inverted indexes, its votes plus t i , which is calculated by 

 i = 

1 

( | n c − n i | 2 + 1) ·
∣∣F c 

E 

∣∣ (3) 

here n c and n i are the numbers of edge attributes belonging to 

he inverted indexes in G 

c 
s and G 

i 
s , respectively. In the incremental 

oW model, not only the types of words are considered in the vot- 

ng process, but the number of each type is also used to determine 

he number of votes. For a certain word, the more the numbers of 

he words in the searching and query SRGs, respectively, vary from 

ach other, the less the number of votes increases. 

In addition, The incremental BoW tree is constructed from top 

o bottom. Thus, the SRG ordering may affect the split order of the 

eaf nodes during the incremental construction process. However, 

n the U-LSM of our framework, the impact of SRD or SRG order 

n the BoW tree is not significant. First, the retrieval performance 

f the BoW tree mainly relies on the clustering results of the de- 

criptors. Regardless of the specific structure of the BoW tree, the 

ufficiently similar SRDs always tend to be clustered into the same 

lass. As a result, the performance of SRG retrieval is hardly be af- 

ected by the SRG ordering in the construction of incremental BoW 

rees. Second, for the retrieval time of the BoW tree, as reported in 

he paper [41] , once sufficient data are included in the incremen- 

al BoW structure, the tree is supposed to be balanced regardless 

f the possible different ordering of the SRGs. Therefore, the time 
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Algorithm 2 Improved spectral method for evaluating similarities 

between SRGs. 

Input: G 

c 
s , G 

i 
s and their affinity matrix M a , G 

c 
s , G 

i 
s contain n 1 and n 2 

nodes, respectively. 

Output: s (Similarity between G 

c 
s and G 

i 
s ) 

1: Initialize the similarity s = 0 and the correspondences vector 

x = zeros (n 1 · n 2 ) . 

2: Set the penalty term R = 1 . 2 and filtering threshold δsc = 0 . 05 . 

3: [ A, V ] = Eigen (M a ) , A and V are the set of eigenvalues and 

eigenvectors respectively. 

4: v = V (: , 1) 

5: while true do 

6: [ v al m 

, pos m 

] = max (v ) , where v al m 

is the maximum compo- 

nent in v , and pos m 

is the index of the v al m 

. 

7: if v al m 

< δsc then 

8: break 

9: end if 

10: v [ pos m 

] = 0 , x [ pos m 

] = 1 

11: pos f = pos m 

/n 2 , pos s = pos m 

% n 2 
12: for i = 1 , . . . , n 1 do 

13: v [ i · n 2 + pos s ] = 0 

14: end for 

15: for i = 1 , . . . , n 2 do 

16: v [ pos f · n 2 + j] = 0 

17: end for 

18: end while 

19: The similarity s between G 

c 
s and G 

i 
s is calculated by (5) 
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onsumption of SRG retrieval is hardly be affected by the SRG or- 

ering in the construction of incremental BoW trees. 

.3.2. Lower-level matching model 

In order to evaluate the similarities between SRGs, the im- 

roved spectral method is applied in the L-LMM. The spectral 

ethod [42] is a graph matching method based on matrix spectral 

ecomposition. First, an affinity matrix M a is established of which 

he rows and columns express the potential correspondences of 

raph nodes. The elements of M a measure the weights of a pair 

f potential correspondences. Then, through the principal compo- 

ent analysis of M a , the spectral method utilizes the eigenvector 

orresponding to the largest eigenvalue to determine the node cor- 

espondences of the two graphs. The spectral method has high 

atching precision and has been successfully applied in many 

elds. In this paper, the elements of M a can be calculated by 

M a 

(
i · n 1 + j, i ′ · n 2 + j ′ 

)

= 

⎧ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎩ 

4 . 5 −
∥∥∥ f i n − f i 

′ 
n 

∥∥∥2 

2 σ 2 
n 

, i f i = j, i ′ = j ′ and 
∥∥ f i n − f i 

′ 
n 

∥∥ < 3 σn , 

4 . 5 −
∥∥∥ f i j 

e − f i 
′ j ′ 

e 

∥∥∥2 

2 σ 2 
e 

, i f i � = j, i ′ � = j ′ and 

∥∥∥ f i j 
e − f i 

′ j ′ 
e 

∥∥∥ < 3 σe , 

0 , otherwise 

(4) 

here n 1 and n 2 are the numbers of nodes in two SRGs, i , j, i ′ , j ′ 
re the indices of nodes in two SRGs. If i = j and i ′ = j ′ , the ele-

ents of M a measure how well node i matches the node i ′ . Assign-

ents that are unlikely to be correct will be filtered out. Similarly, 

f i � = j and i ′ � = j ′ , the elements of M a describes how well the rela-

ive pairwise relations of two edge (i ′ , j ′ ) is preserved after putting

hem in correspondence with the edge (i, j) . σn , σe are the param- 

ters used to adjust the weights of the potential correspondences. 

he larger σn and σe , the more pairwise relations between wrong 

ssignments will get a positive score. 

To evaluate the similarity between SRGs, the spectral method is 

mproved from two aspects. First, a filtering threshold δsc ( δsc > 0 ) 
s set to avoid overmatching when using the main eigenvector 

o calculate the correspondences. Second, although the spectral 

ethod can calculate the correspondences of nodes in the graph, 

t cannot evaluate the similarity between two graphs. Therefore, a 

imilarity calculation function is designed to calculate the similar- 

ty between two SRGs quickly and accurately, which can be calcu- 

ated by 

 = x T M a x/ ( n 1 · n 2 ) − ( n 1 + n 2 ) R 

2 / 2 n c (5) 

here x is the correspondences calculated by the spectral method, 

 c is the number of correspondences, R is penalty term which 

unishes the insufficient correspondences. The process of the im- 

roved spectral method is shown in Algorithm 2 . 

.3.3. Connection between two levels 

The U-LSM and the L-LMM are fused closely in the two-level 

atching model as illustrated in Fig. 4 . The L-LMM receives the 

andidates provided by the U-LSM to calculate the similarities be- 

ween the SRGs. Meanwhile, the L-LMM provides the feedback in- 

ormation to update the parameters of the U-LSM, so as to adjust 

he structure of BoW tree in the U-LSM. 

First, the K SRG candidates are provided by the U-LSM to the L- 

MM. Theoretically, the results given by the L-LMM considering 

ntire information of the SRG are more accurate than the results 

iven by the U-LSM only considering the statistic information in 

he SRG. Therefore, Thus, a larger value of K SRG makes the final re- 

ults given by the whole framework more accurate. However, since 

he time consumption of the graph matching process in L-LMM is 

uch greater than the graph search process in U-LSM. In order to 

nsure the efficiency of the framework, K cannot be too large. 
SRG 

7 
n the implementation, the K SRG is set to 25, which is a moderate 

election to balance the accuracy and the efficiency of the whole 

ramwork. 

According to the matching conditions between the SRGs in the 

-LMM, the L-LMM transmits the growth factor τg 

(
0 < τg ≤ 1 

)
or 

he repression factor τr ( τr ≥ 1 ) to the leaf nodes of the BoW tree 

n the U-LSM. Specifically, if the L-LMM matches the SRDs (edge 

ttributes in the SRG) belonging to different leaf nodes, it usually 

ndicates that the two leaf nodes are excessively split during the 

ncrement of the BoW tree, thus it is necessary to avoid these two 

eaf nodes from splitting again. Hence, the split threshold of the 

eaf nodes is increased by T h s = T h s · τr , which make the BoW tree 

n the U-LSM grow slowly in the two leaf node. Similarly, if the 

RDs belonging to the same leaf node fail to match in the L-LMM, 

t usually refers that there exist inconsistent SRDs in this leaf node, 

nd the leaf node needs to be further split to fit the real distri- 

ution of SRDs. Hence, the split threshold of the leaf node is de- 

reased by T h s = T h s · τg , which accelerates the growth of the BoW 

ree at the leaf node. After applying the feedback mechanism from 

he L-LMM to the U-LSM, the structure of BoW tree in the U-LSM 

s adaptively adjusted the tree grows. In the implementation, the 

e select τg = 0 . 98 , τr = 1 . 05 , which yields good performance of

he framework. 

. Experiments 

In this section, the experimental setup is firstly introduced. 

econd, distinguishability of the SRD is evaluated. Finally, our 

lace recognition framework is comprehensively evaluated by com- 

arison with five state-of-the-art place recognition algorithms, in 

erms of the precision-recall (P-R) and robustness. 

.1. Experimental setup 

The KITTI [43] , Hannover2 [44] , and self-built campus dataset 

n Nankai University (NKU-MC) are employed to carry out the 
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Fig. 4. The connection between the two levels. 1 © The SRG sends its edge attributes to the U-LSM. 2 © The U-LSM searches for the similar SRGs as the candidates and sends 

them to the L-LMM. 3 © The L-LMM receives the SRG with its nodes, edges, node attributes and edge attributes. 4 © The L-LMM calculates the similarities between the SRG 

and the candidates. 5 © The L-LMM sends back the growth or repression factor to the U-LSM. 6 © The U-LSM updates its internal parameters and adjusts its structure. 
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xperiments. The KITTI dataset is collected in streets by a car 

quipped with a Velodyne HDL-64H LiDAR. In the experiments, 

he sequences 00, 05, 06, 07 and 08 are selected, which contain 

541, 2671, 1101, 1101 and 4071 frames of point cloud, respec- 

ively. Each point cloud in the KITTI contains about 120,0 0 0 points 

ith max range of 100m. The Hannover2 dataset is collected in 

he campus environment of the Universitt Hannover by a rotating 

ICK LMS sensor. 922 frames of point cloud are obtained in the 

annover2, and each point cloud contains approximately 16,600 

oints with max range of 30m. The NKU-MC is collected by a P3D- 

 robot equipped with a Velodyne HDL-32 LiDAR. In the NKU-MC, 

he robot travels around the campus and collects 2454 frames of 

oint cloud, each of which contains about 60,0 0 0 points with max 

ange of 120 m. 

In all the experiments, two frames of data are considered to 

e collected from the same place if their Euclidean distance is 

ess than 6.0 m. In order to avoid performing place recognition 

ith the adjacent frames, 50 adjacent frames before the current 

rame are excluded from the searching scope. Under this condition, 

here are 817, 513, 271, 86, 404, 289 and 360 positive samples in 

ITTI 00, 05, 06, 07, 08, Hannover2 and NKU-MC sequence, respec- 

ively. Moreover, the thresholds for segmenting point clouds are 

et to 1.2 m, 1.0 m and 1.0 m on the KITTI, Hannover2 and NKU-

C, respectively. All the experiments are carried out on a unified 

ardware platform, with Intel i7-8700 CPU with a clock speed of 

.6GHz, 8GB memory, and Ubuntu 18.04 operating system. 

.2. SRD quality evaluation 

First of all, the stability of SRD should be demonstrated. To this 

nd, an experiment is carried out to illustrate the influence of the 

umber of random point pairs N r to the stability of SRD. In the 

xperiment, 50 0 0 pairs of clusters are selected from the KITTI 00 

equences. For each pair of clusters, the SRD is extracted for 10,0 0 0

imes for a specific value of N r . Then, the centroid and covari- 

nce of the 10,0 0 0 SRDs are calculated. Next, the maximum dis- 

ance from the SRD to the centroid and the maximum eigenvalue 

f the covariance are calculated. Finally, the maximum distances 

nd maximum eigenvalues of the covariances are averaged over 

he 50 0 0 pairs of clusters. The results are shown in Fig. 5 , in which

he x-axis represents the value of N r , and the y-axis represents the 

verage maximum distance and maximum eigenvalue for Fig. 5 (a) 
8 
nd (b), respectively. As can be seen, when the N r is larger than 

0 0 0, the distribution of the computed SRDs is relatively invariant 

.r.t. the value of N r . Therefore, in the following experiment, in or- 

er to balance the stability and computational efficiency of SRD, N r 

s set to 1500. 

To the best of our knowledge, the proposed SRD is the first de- 

criptor to describe the general relative relations between a pair 

f irregular clusters. Therefore, the SRD is compared with the fea- 

ures which are also extracted from a pair of clusters. Given a pair 

f clusters C j = { p i 
j 
, i = 1 , 2 , . . . , n j } and C k = { p i 

k 
, i = 1 , 2 , . . . , n k }

here n j and n k are the numbers of points in C j and C k . Given a

unction F ( ·) of which the input is a set of points, and the output 

s a feature to describe the characteristic of the point set. Define 

he features f 
jk 
+ and f 

jk 
− as 

f jk + = F (C j ∪ C k ) (6) 

f jk − = D (F (C k ) , F (C k )) (7) 

n (7), D 

(
f j , f k 

)
= { 

∣∣∣ f i 
j 
− f i 

k 

∣∣∣, i = 1 , . . . , dim 

(
f j 
)} where the features

f j and f k corresponding to the C j and C k are generated by F 
(
C j 

)
nd F ( C k ) , dim ( ·) is a function to calculate the dimension of a fea-

ure, and f i 
j 

and f i 
k 

represent the i th components in the f j and

f k , respectively. The features f 
jk 
+ (equal to f 

k j 
+ ) describe the holis- 

ic characteristics of the pair of clusters C j and C k , f 
jk 
− (equal to

f 
k j 
− ) represent the differences between C j and C k in feature space. 

n this paper, the ESF [45] , VFH and globally aligned spatial distri- 

ution (GASD) [46] , which are usually used for object recognition, 

re selected to perform the function F ( ·) and extract the features 

f 
jk 
+ and f 

l j 
− from C j and C k . In the experiment, f 

jk 
+ generated by the

SF is nominated as ESF + , and f 
jk 
− generated by the ESF is nomi-

ated as ESF −. Similarly, the VFH + , VFH −, GASD + and GASD − are

efined in the same way. Therefore, the SRD is compared with the 

SF + , ESF −, VFH + , VFH −, GASD + and GASD −, which are the features

o describe a pair of clusters just like the SRD. 

In order to show the distinguishability of SRD comprehen- 

ively, we extract the SRD, ESF + , ESF −, VFH + , VFH −, GASD + and

ASD − from multiple pairs of clusters in four sequences from 

hree dataset, i.e. KITTI 00, KITTI 08, Hannover2 and NKU-MC, re- 

pectively. From each sequence, 50 0 0 positive samples (the same 
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Fig. 5. The influence of the number of random point pairs to the stability of SRD. 

Table 1 

AUC of the features extracted from a pair of clusters. 

ESF + ESF − VFH + VFH − GASD + GASD − SRD 

KITTI 00 0.9597 0.7767 0.6468 0.6134 0.8842 0.7351 0.9912 

KITTI 08 0.9282 0.8502 0.8397 0.7175 0.9395 0.7873 0.9989 

Hannover2 0.9886 0.8822 0.8614 0.8342 0.9037 0.8971 0.9969 

NKU-MC 0.9338 0.8586 0.7260 0.7212 0.9129 0.8360 0.9974 
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air of clusters from the real world) and 50 0 0 negative samples 

a different pair of clusters) are randomly selected. The Euclidean 

istance is used to measure the similarity between the features. 

hen the Euclidean distance between the features is less than a 

hreshold th e , the features are considered to be extracted from the 

ame pair of clusters, which are then compared with the ground- 

ruth. As th e changes, a set of the false positive rates (FPRs) and 

he true positive rates (TPRs) is computed, and the curve of re- 

eiver operating characteristic (ROC) is drawn to evaluate the dis- 

inguishability of the features. The area under curve (AUC) is the 

rea enclosed by the ROC curve and the coordinate axis, which 

lso reflects the distinguishability of the features quantitatively. 

he VFH, ESF and GASD are implemented by point cloud library 

PCL) to generate ESF + , ESF −, VFH + , VFH −, GASD + and GASD −. In

he VFH, the radius for calculating the normal vectors is set to 

.05m. The default parameters provided by PCL are used for ESF 

nd GASD. The ROC curves are shown in Fig. 6 , and the AUC is

hown in Table 1 . 

Compared with the other features, the proposed SRD focuses on 

he spatial relations between the clusters, which are usually dis- 

inguishable in real environments. Moreover, since the boundaries 

f clusters are considered in the process of extracting SRD, two 

airs of clusters with similar relative distances can also be distin- 

uished well by the SRD. As can be seen from the ROC curve and

he AUC for the four sequences, the proposed SRD achieves better 

esults than the other features. in each sequence, the AUC of SRD 

s greater than 0.99, demonstrating that the SRD has high distin- 

uishability, and also proving that the SRG constructed by the SRDs 

ontains sufficient information to distinguish the different places. 

.3. Precision-recall evaluation 

To evaluate the P-R performance, our framework is compared 

ith five state-of-the-art place recognition algorithms, including 

he SC [13] , M2DP [12] , SHOT [22] , ESF [45] and VFH [15] . The

C encodes a whole point cloud into a matrix as the global de- 

criptor. The M2DP is a global descriptor which describes the en- 
9 
ironment according to the distribution of point cloud. The SHOT 

s a histogram-based local descriptor which encodes the statistics 

f normal vectors into a descriptor. The ESF and VFH are the global 

escriptors which are also based on histograms. For the implemen- 

ation of the SC and M2DP, we use the open-source MATLAB code 

eleased by the authors. As for the SHOT, ESF and VFH, a C++ ver- 

ion implemented in the PCL is used. The M2DP and ESF use the 

efault parameters given by their authors. And for the SC, a sub- 

escriptor called key ring is required for K-nearest-neighbor search, 

nd thus the number of neighbors K SC is an important parameter 

f the SC. According to [13] , we choose K SC = 10 and K SC = 50 in

he SC, respectively, which are denoted by SC-10 and SC-50. The 

adius for calculating the normal vectors in the SHOT and VFH is 

et to 0.05 m. For the parameters of our framework, the candidate 

rame K SRG is selected as 25, σn and σe in the L-LMM are set to 

.03 and 0.08, respectively. 

The P-R curves for the six methods are shown in Fig. 7 . It

an be seen that our framework outperforms the other five algo- 

ithms in all the sequences. Specifically, the SHOT, ESF and VFH 

ave poor performance in all sequences, because they are based 

n histograms and can hardly distinguish the places with similar 

tructures. The SC and M2DP achieve outstanding results in the 

ost sequences, but they perform poorly in the Hannover2 and 

ITTI08, respectively. For the Hannover2, due to the limited range 

f SICK LMS, which makes the point clouds in the Hannover2 con- 

ain less environmental information than the other datasets, the 

esults of the comparison algorithms are all not outstanding in this 

ataset. In contrast, the proposed framework achieves good results 

n the Hannover2, because the high distinguishability of the SRD 

an remedy the defect caused by insufficient information. More- 

ver, for KITTI 08, the robot revisits the same place from different 

irections when collecting the data. As a result, the M2DP fails to 

erform the place recognition in the KITTI 08. The reason is that 

he M2DP depends on the distribution of point cloud to perform 

lace recognition, it cannot keep stable when the viewpoint of the 

obot changes. In contrast, the proposed framework also achieves 
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Fig. 6. The ROC curves of the SRD and the comparison features in (a) KITTI 00, (b) KITTI 08, (c) Hannover2 and (d) NKU-MC, respectively. 

Table 2 

Recall at 100% precision in each evaluation sequence. 

SC-50 SC-10 M2DP SHOT VFH ESF Ours 

KITTI 00 0.8444 0.8580 0.8641 0.8335 0.1261 0.0147 0.9119 

KITTI 05 0.8677 0.8424 0.6304 0.7254 0.2943 0.0468 0.7992 

KITTI 06 0.9333 0.9398 0.9188 0.7601 0.3875 0.1070 0.9815 

KITTI 07 0.3918 0.3299 0.2404 0.5342 0.1146 0.0312 0.7396 

KITTI 08 0.3276 0.3267 0.2005 0 0 0.0074 0.3614 

Hannover2 0 0 0.0801 0.0941 0.0329 0.1202 0.5017 

NKU-MC 0.2927 0.3122 0.1293 0.1972 0.0861 0.0167 0.5333 
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ood results in the KITTI 08, because our framework is based on 

he graph matching which is robust to the viewpoint of robot. 

The results in terms of the recall at 100% precision are listed 

n Table 2 . Our framework achieves the best results on six se- 

uences, and the recalls on the KITTI 07, Hannover2 and NKU- 

C are 20.54%, 40.05% and 22.11% better than the second-best 

ethod, respectively. These quantitative results demonstrate that 

ur framework guarantees high recall with no misrecognition. In 

ddition, the maximum F1-scores for the methods listed in Table 3 , 

nd the F1-score is calculated by 

 1 = 2 · pr · rc/ ( pr + rc ) (8) 

here pr and rc represent the precision and recall. For the maxi- 

um F1-scores, our framework also achieves the best results in all 
10 
equences, which further proves the superiority of the presented 

ramework. 

Fig. 8 shows the qualitative visualization of the proposed 

ethod corresponding to the recall at 100% precision, where the 

rue positives are marked by red and the false negatives by black. 

n the KITTI 00, 05, 06, 07 and NKU-MC sequences, our frame- 

ork recognizes most of places correctly, demonstrating that our 

ramework performs well in most scenarios. In the KITTI 08 and 

annover2, though there exist some false negatives, the robot still 

eeps retrieving the true positives along the trajectory, which pro- 

ides frequently detected loop closures for the localization and 

apping. 

Moreover, it is worth pointing out that our framework obvi- 

usly outperforms the comparison methods in the environments 
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ontaining multiple similar places (e.g., KITTI 07). Because in our 

ramework, the relative spatial relations between the clusters are 

ully exploited which makes the places with similar structures dis- 

inguishable from each other. For example, the scans of frame 796 

nd frame 846 in KITTI 07 are collected at different places marked 
ig. 7. The P-R curve for each evaluation sequence. Fig. 7 (a), (b), (c), (d), (e), (f) and (g) s

KU-MC, respectively. 

11 
n Fig. 9 (a). The two frames of data were collected on a narrow 

treet with abundant parked vehicles, the appearances and struc- 

ures of the two frames are similar to each other, which is very 

hallenging for distinguishing the different places, as can be seen 

n Fig. 9 (b). In our framework, the differences between the two 
how P-R curves in KITTI 00, KITTI 05, KITTI 06, KITTI 07, KITTI 08, Hannover2 and 
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Fig. 7. Continued 

Table 3 

Maximum F1-scores in each evaluation sequence. 

SC-50 SC-10 M2DP SHOT VFH ESF Ours 

KITTI 00 0.9459 0.9347 0.9335 0.9332 0.6454 0.5025 0.9543 

KITTI 05 0.9408 0.9363 0.8000 0.8856 0.6125 0.4939 0.9481 

KITTI 06 0.9655 0.9690 0.9704 0.8928 0.7566 0.5675 0.9907 

KITTI 07 0.6769 0.6178 0.4194 0.6939 0.4490 0.3953 0.8670 

KITTI 08 0.5886 0.5856 0.0174 0.4688 0.0540 0.3483 0.7519 

Hannover2 0.5120 0.4498 0.4920 0.6606 0.6747 0.7638 0.7665 

NKU-MC 0.7613 0.7365 0.2648 0.5556 0.3570 0.3324 0.7806 

Fig. 8. Qualitative performance visualization of our framework at 100% precision (0 false positives) along the trajectory. The true positives are marked by red, the false 

negatives are marked by black and the true negatives are marked by blue. (For interpretation of the references to colour in this figure legend, the reader is referred to the 

web version of this article.) 
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rames can be described by the relative spatial relations between 

he segmented clusters, as is illustrated in Fig. 9 (c), which makes 

he presented framework perform place recognition correctly. 

In order to further show the P-R performance of our frame- 

ork, two state-of-the-art algorithms, i.e., SG [35] and Locus [36] , 

re compared with our framework. In SG, the point clouds are 

egemted by a semantic segmentation method and the places are 

epresented by the semantic graphs. Then, the similarities between 

he graphs are estimated by a SimGNN-based network. The Locus 

egments the point cloud and extracts the segment features by a 
12 
D CNN. Both the segment features and the topological informa- 

ion related to the segments are encoded into a global descriptor 

o evaluate the similarities between two places. In the experiment, 

he same experimental setup and data sequences are used as in 

36] and [35] , and the comparison results in term of the maxi- 

um F1-score are listed in Table 4 , where the results of SG and

ocus are reported in [35] and [36] , respectively. Our framework 

chieves the best results on most sequences. For the average maxi- 

um F1-scores on the six sequences, our framework performs 4.0% 

etter than the second-best method. It is worth pointing out that 
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Fig. 9. The illustration of the recognition process at frame 796 and frame 846 in KITTI 07. (a) The locations of the vehicle with the LiDAR sensor at the two frames, 

respectively, are marked in the map, and the distance between the two loactions is 55.87 m. (b) The images and point clouds taken at the two loactions, respectively. And 

the appearances and structures of the two places are extremely similar. (c) The clusters generated by the segmentation method. The differences between the two frames 

can be identified by analyzing the spatial relations between the segmented clusters. For example, 1 © there is no object in the same relative position of a car. 2 © There is an 

object with different shapes in the same relative position of a car. 3 © Although the shapes of the cars are similar, their relative spatial relations are different. 

Table 4 

Maximum F1-scores in each evaluation sequence. 

KITTI 00 KITTI 02 KITTI 05 KITTI 06 KITTI 07 KITTI 08 Mean 

SG-RN 0.960 0.859 0.897 0.944 0.984 0.783 0.904 

SG-SK 0.969 0.891 0.905 0.971 0.967 0.900 0.934 

locus 0.983 0.762 0.981 0.992 1.0 0.931 0.942 

Ours 0.995 0.943 0.994 1.0 0.993 0.966 0.982 

Table 5 

Retrieval recall with different SRG ordering in BoW tree. 

KITTI 06 KITTI 07 Hannover2 NKU-MC 

Positive Order 1.0 0.9896 0.9100 0.9111 

Reverse Order 1.0 0.9896 0.9192 0.9067 
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Table 6 

Average retrieval time with different SRG ordering in BoW tree (ms). 

KITTI 06 KITTI 07 Hannover2 NKU-MC 

Positive Order 4.235 4.559 2.744 4.228 

Reverse Order 4.314 4.348 2.812 4.167 

Table 7 

Recall at 100% precision when the viewpoint 

change of robot is greater than 30 ◦ . 

KITTI 00 KITTI 05 KITTI 08 

M2DP 0.05333 0 0 

SC-50 0.34722 0.51563 0.33838 

SC-10 0.28070 0.54688 0.33333 

ESF 0 0.01563 0.00754 

VFH 0 0 0 

SHOT 0.01333 0.15625 0.19849 

Ours 0.65333 0.59375 0.36432 
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oth the SG and Locus require a complex offline training process. 

n comparison, our framework does not need offline training and 

ll the steps can be run without any priori information of the en- 

ironment. 

In addition, the proposed framework can ensure reasonable 

alculation efficiency. The runtimes of the description phase and 

earching phase of our framework are computed on the KITTI 00, 

hich are 0.2124s and 0.2355s on average, respectively. Therefore, 

he place recognition performed by our framework can be run in 

eal-time at approximately 2–3 Hz. 

.4. Evaluation on robustness of U-LSM against SRG ordering 

To demonstrate that the impact of SRG ordering on the U-LSM 

s not significant, we experimentally verify the influence on the 

RG ordering on retrieval performance and retrieval time of the in- 

remental BoW tree. The experimental setups and the parameters 

f our framework are the same as those in the P-R experiment in 

ection 4.3 . For the parameters of the U-LSM, the number of re- 

rievals K SRG is set to 25. The retrieval performance is evaluated by 

he retrieval recall of the U-LSM. In order to analyze the influence 

f the SRG ordering on the retrieval performance, the SRGs are in- 

utted into the tree in positive order and in reverse order, respec- 

ively. The recalls of retrieval are calculated and compared on four 

equences KITTI 06, KITTI 07, Hannover2 and NKU-MC from three 

atasets, respectively, as shown in Table 5 . It can be seen that, on

he same sequences, the retrieval recalls of BoW tree are approx- 

mative for different ordering of SRGs. Especially for the KITTI 06 

nd 07, the retrieval recalls are equal for the positive and reverse 

rder. The results demonstrate that the retrieval performance of 

oW tree is hardly impacted by the SRG ordering. 
13 
Similarly, for the influence of the SRG ordering on the retrieval 

ime of the incremental BoW tree, the SRGs are inputted into the 

ree in positive and reverse order, respectively. The time consump- 

ion of retrieval are compared on the sequences KITTI 06, KITTI 07, 

annover2 and NKU-MC, respectively, as shown in Table 6 . 

.5. Evaluation on robustness against viewpoint 

When a place is revisited by the robot from a different view- 

oint, the spatial distribution of the point cloud may change sig- 

ificantly, which is substantially challenging for the place recog- 

ition. However, our framework benefits from the graph matching 

hich is robust against changes in viewpoint. Hence, the changes 

f viewpoint have less negative impact on our framework. In se- 

uences KITTI 00, 05 and 08, there are multiple places that are re- 

isited by the robot from different viewpoints. The recall at 100% 

recision on the three sequences are calculated when the robot re- 

isits a place with a viewpoint change larger than 30 ◦. As shown in

able 7 , compared with other algorithms, our framework achieves 

he highest recall at 100% precision, demonstrating that our frame- 

ork achieves high viewpoint robustness. 
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. Conclusion 

This paper has proposed a two-level framework for 3D LiDAR 

lace recognition based on the SRG that captures the spatial re- 

ations between clusters segmented from the environments. First, 

he effective ground removal and segmentation methods have been 

pplied to segment the point cloud into multiple independent clus- 

ers. Then, the SRDs between the clusters have been extracted and 

he point cloud is represented by the SRG to describe the environ- 

ent. Finally, two effective models have been fused into a two- 

evel model for matching the SRGs. In the U-LSM, an incremental 

oW model is utilized to quickly search the candidates through the 

istribution of the SRDs in the SRG, and then the improved spec- 

ral method is used to calculate the similarities between the cur- 

ent SRG and the candidates in the L-LMM. The two models have 

 bi-directional information exchange, which improves the perfor- 

ance of the overall model. Extensive experiments have been con- 

ucted on both the public datasets and the self-built dataset. The 

esults demonstrate that the SRGs contains sufficient information 

o describe the environments and the proposed framework per- 

orms place recognition with high precision, recall and viewpoint 

obustness. 
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