IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, VOL. 72, 2023

8505815

Adaptive Soft Encoding: A General Unsupervised
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Abstract— Place recognition (PR) is an important problem in
environment perception, which can help simultaneous localization
and mapping (SLAM), as well as scene understanding of mobile
robots. For PR, feature aggregation plays an important role in the
representation of environments. In this article, an adaptive soft
encoding (ASE) method is proposed for aggregating numerous
features into low-dimensional feature vectors, which includes
a training phase and an encoding phase. For the training
phase, the information along each dimension of the features is
evaluated, which is further employed to assign all dimensions into
different subdimensional intervals. After that, subdimensional
Gaussian mixture models (SD-GMMs) are fit by features in
the subdimensional intervals and organized into an ASE tree,
of which the tree nodes hierarchically store the parameters of
the SD-GMMs to reflect the distribution of the features. For the
encoding phase, features are fed into the root node of the ASE
tree. The weight of each node is calculated from top to bottom
to generate multiple aggregated feature vectors with different
description capabilities. In addition, an ASE-based framework
for PR is proposed, in which local descriptors are extracted from
sensor data (e.g., images or LiDAR data), and then aggregated
into global descriptors by ASE. Finally, owing to the hierarchical
structure of the ASE tree, a hierarchical matching strategy of
the global descriptors is designed to recognize places efficiently.
Experimental results demonstrate that feature vectors aggregated
by ASE have strong distinguishability, and the ASE-based PR
method achieves good accuracy and efficiency. The code of ASE
can be accessed at https://github.com/wdyiwdwd/ASE-Encoder.

Index Terms— Adaptive soft encoding (ASE), feature aggrega-
tion, mobile robots, place recognition (PR).

NOMENCLATURE
D  Set of features, D = {d;,i =1,2,...,n}.
d; ith feature in D, d; = [d;1,d;a, ..., dim]"
e R™.
n;  Number of bins divided along the kth
dimension in the soft encoding (SE).
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Ok Resolution of bins along the kth
dimension in SE.

Wi k,p Weights measuring how close d; x is to its bin
boundaries in SE.

f Feature vector aggregated by SE,
=1 faroos fu, 1T €RY.

X Information amounts along each dimension in
adaptive SE (ASE), X = {)x, k=1,2,...,m'}.

N Number of subdimensional intervals in ASE.

Z Subdimensional interval boundaries in ASE
Z={¢,i=0,1,...,N}.

Gi SD-GMM corresponding to the ith
subdimensional intervals in ASE.

T jth tree node in the ith
level of the ASE tree.

ki j, ti,; Intermediate results to calculate aggregated
feature vectors in 7; ;.

F Set of aggregated feature vectors in the ASE
tree, F ={f;,j=12,...,N}.

P Place.

Lp Set of local descriptors extracted from the

sensor data collected in P.
op Set of global descriptors aggregated by ASE to
represent P, dp = {gh,i =1,2,..., N}.

gp ith global descriptor aggregated by ASE,
corresponding to the feature vector in the ith
level of the ASE tree.

Vi Information amounts contained in g%;.

I. INTRODUCTION

LACE recognition [1], [2], [3], [4] is an important task

in the field of environment perception. A good method of
place recognition (PR) can correctly and efficiently recognize
a place by matching current sensor data with historical data,
which is helpful in terrain assessment [5], scene understanding
[6], and localization of mobile robots [7]. In addition, PR can
be used in simultaneous localization and mapping (SLAM)
[8], [9], [10] to detect a loop closure and further to eliminate
accumulated errors [11].

Feature aggregation refers to the process of combining high-
dimensional features into a feature vector. Popular methods
of feature aggregation are based on by clustering techniques,
including bag of words (BoW) [12] and vector of locally
aggregated descriptors (VLAD) [13]. These methods allow
for efficient modeling of complex data by reducing the
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dimensionality of the feature space while preserving important
information. Feature aggregation plays an important role in
PR. It relies on aggregating high-dimensional features of
sensor data into feature vectors to describe places, which are
matched to recognize places by similarities between the feature
vectors [14].

Feature aggregation methods are usually utilized in local
descriptor-based PR, in which local descriptors are extracted
from sensor data to describe a place, e.g., the speeded-
up robust features (SURFs) [15], scale-invariant feature
transforms (SIFTs) [16], and oriented fast and rotated
briefs (ORBs) [17] from images, signatures of histogram of
orientation (SHOTSs) [18], and point feature histograms (PFHs)
[19] from LiDAR data. Compared with global descriptor-
based methods [20], [21], [22], [23], [24], [25], [26], local
descriptors are more robust to the angle of view of the sensors.
However, establishing correspondences between numerous
local descriptors in different places is inefficient. Therefore,
feature aggregation is utilized to aggregate local descriptors
into global descriptors for representing environments, which
takes advantages of both methods.

For instance, the fast appearance-based mapping (FAB-
MAP) [14] extracted SURFs from images, and a feature
aggregation method, probability-based BoW [12], was applied
to encode the obtained SURFs into a binary global descriptor.
In [27], the echo state network (ESN) was applied to
model image sequences. Then, the position-invariant robust
features (PIRFs) were extracted from the image sequences
and aggregated into a global descriptor by a BoW [12]
approach. Likewise, in [28], normal aligned radial features
(NARFs) were extracted from LiDAR data and aggregated into
a global descriptor by BoW. The PointNetVLAD [29] utilized
a PointNet to extract features from LiDAR data collected
in a local area, and the obtained features were aggregated
by a supervised feature aggregation method, i.e., NetVLAD.
In [30], the spatial relation descriptors (SRDs) were integrated
into a graph-based representation called spatial relation graph
(SRG), and an increment BoW model [31] was utilized to
retrieve similar SRGs from historical data. In our previous
studies [11], [32], structural units were extracted from 2-D
and 3-D LiDAR data (2-D SUs and 3-D SUs) and aggregated
into global descriptors by SE.

Feature aggregation methods in the field of PR can be
categorized into two types: supervised methods [29] and
unsupervised methods [11], [12], [13]. Supervised methods
require labeled data for pretraining, which takes a long period
to be deployed and usually requires GPU acceleration, which
limits their applications.

Unsupervised methods perform feature aggregation adap-
tively according to the distribution of input features, which
are divided into clustering-based methods and statistic-based
methods. Clustering-based methods [12], [13] cluster features
and generate a feature vector based on the relationship between
the clusters of features. For instance, BoW clusters the features
using the K-means algorithm and aggregates the features by
counting the number of features in each cluster. However,
clustering-based methods cannot distinguish data accurately
at cluster boundaries, as they lack a probability-based data
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model, and thus, are not robust to the noise. In addition,
due to clustering, these methods incur high-computational
complexity, resulting in lower training efficiency.

Different from clustering-based methods, statistic-based
methods [11], [32], [33] do not require the pretraining
process. The histogram [33] was a representative statistic-
based method. It was generated by counting the number of
feature element in each bin, which was manually set. In order
to improve the performance of the histogram, the SE [32] not
only considered to which bin the feature element belonged,
but also calculated weights to reflect to what extent the
element belonged to the corresponding bin. Statistic-based
methods are fast and easy to implement. For low-dimensional
features, results of statistic-based methods usually have high
distinguishability [32]. However, since statistic-based methods
consider the distribution on features along each dimension,
the length of the aggregated vector increases greatly, as the
dimension of features increases. Therefore, statistic-based
methods are not well suited for high-dimensional features.

In this article, a novel feature aggregation method called
ASE is proposed, which provides SE with the adaptability
through an unsupervised training phase and takes advantages
from both clustering-based and statistic-based methods.
In ASE, features are first normalized and orthogonalized.
Then, the amount of information along each dimension of
features is analyzed, and subdimensional intervals are assigned
to make the information amount of each subdimensional
interval similar. Next, subdimensional Gaussian mixture
models (SD-GMMs) are fit according to the distribution of
features in each subdimensional interval. After that, an ASE
tree is established to organize SD-GMMs and utilized for
aggregating features into a set of feature vectors with low
dimensions. Compared with clustering-based methods, ASE is
more efficient in the training phase. Compared with statistic-
based methods, ASE is adaptive to high-dimensional features.

In addition, an ASE-based PR framework is proposed in this
article. First, local descriptors, such as ORBs and SIFTs from
images or SRDs and 3-D SUs from LiDAR data, are extracted.
Then, a small amount of local descriptors are used for fast and
online training, which generates an ASE tree. Then, the local
descriptors are aggregated into multiple global descriptors by
the ASE tree. These global descriptors of a place contain
different information amounts and have different description
capabilities. Finally, PR is performed by hierarchical matching
of these global descriptors. The contributions of this article are
summarized as follows.

1) A novel unsupervised feature aggregation method, ASE,
is proposed, which improves SE with adaptability to
features with any types and dimensions. Moreover, the
ASE method only needs a small amount of training data
and can quickly generate an effective data representation
model without the need of GPU acceleration.

2) An ASE-based PR framework is proposed, in which
different types of local descriptors from different types
of sensors can be aggregated into distinguishable global
descriptors. Then, a hierarchical matching strategy is
designed, which utilizes global descriptors with different
information amounts and lengths to accelerate the PR.

Authorized licensed use limited to: Zhejiang Lab. Downloaded on April 26,2024 at 07:53:59 UTC from IEEE Xplore. Restrictions apply.



GONG et al.: ASE: A GENERAL UNSUPERVISED FEATURE AGGREGATION METHOD FOR PR

3) Extensive experiments are carried out on public and
self-built data sequences collected by 3-D LiDARs and
cameras, demonstrating that ASE and the ASE-based PR
framework achieve good accuracy and efficiency.

The rest of this article is organized as follows. The system
overview is presented in Section II. In Section III, we give a
detailed description for ASE. The ASE-based PR framework
is introduced in Section IV. Comprehensive experimental
evaluations are shown in Section V. The conclusions are drawn
in Section VI.

II. SYSTEM OVERVIEW

In this article, the ASE-based framework is designed to
describe a place by aggregating local descriptors extracted
from sensor data into global descriptors and match global
descriptors to recognize a place. The overview of the ASE-
based framework for PR is shown in Fig. 1, which is composed
of two phases, i.e., description and search.

In the description phase, local descriptors are first extracted
from sensor data (e.g., images and LiDAR data), yielding local
descriptor set £. Then, local descriptors in the first K; frames
are utilized to perform ASE training, including four steps,
i.e., preprocessing model training, subdimensional interval
dividing, SD-GMM fitting, and ASE tree construction. For
ASE training, the information amount along each dimension
of local descriptors is evaluated, and then, dimensions of local
descriptors are assigned into different subdimensional intervals
according to information amounts. For each subdimensional
interval, a GMM is utilized to fit the distribution of local
descriptors in this subdimensional interval, called SD-GMM.
After that, SD-GMMs in all subdimensional intervals are
organized into a tree structure called ASE tree, which is
utilized for calculating global descriptors from top to bottom.

For ASE encoding, local descriptors obtained in the
description phase are first preprocessed and then fed into the
root node of the ASE tree to aggregate them into a set of global
descriptors 0 = {g1, g2, - - -, gn}. It is worth pointing out that,
for a set of local descriptors, multiple global descriptors can
be aggregated by ASE to characterize a place. They contain
information from less to more, indicating that they describe a
place from coarse to fine. Specifically, g; is generated from
gi-1, and as i gets larger, g; becomes longer. The longer the
g; is, the more the information g; contains.

In the search phase, a hierarchical matching strategy is
proposed for matching global descriptors of places from
coarse to fine. In order to improve the matching efficiency,
the historical places, which have significant appearance
differences with the current place, are filtered out in stages
by matching global descriptors with different lengths and
information amounts. The notation used throughout this article
is listed in Nomenclature.

III. ADAPTIVE SOFT ENCODING
A. Soft Encoding

SE proposed in our previous work [32] is a feature
aggregation scheme for aggregating SUs extracted from 2-D
LiDAR data. However, in [32], the input features are limited
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Fig. 1. Architecture overview of the ASE-based framework for PR.

to a specific form of three dimensions, which indicates that
no general expression of SE is given for features with any
dimension. In this section, the original SE is extended to
any m-dimensional (m € N) features. The input feature set
is denoted by D = {d;,i = 1,2,...,n}, where d; =
[diy,dip, ..., d,-,m]T € R™. The aggregated feature vector of
D isdenoted by f =[f1, f>, ..., fnf]T € R"*/. The procedure
of SE includes two steps, i.e., weight calculating and weight
combining, which are illustrated in Fig. 2, and the overall
procedure is summarized in Algorithm 1.

For weight calculating, along the kth dimension of features
in D, two preset thresholds d,f‘i“ and 4" are given according
to the prior information, which are the lower and upper
bounds, respectively. Then, the kth dimension of features
is divided into n; bins with the resolution calculated by
O = (d™ — d,;“i“) /ni and the dividing boundaries by /i ; =
d™+ -8, j=0,1,...,n Next, the index of the bin along
the kth dimension to which d; € D belongs is calculated by

di. _dmin
Mk = LuJ (1)
Ok

The weights w;; and w; ;> measuring how close d; is to
the dividing boundaries I ,, , and I ,, 41 are calculated by

Wik = (dix — ley, )/ 2)
i1 = (st — dik) /S
From (2), two weights satisfy w;x; + wix2 = 1,
k=1,2,...,m.

For weight combining, for d; € R™, m pairs of weights used
to calculate elements in f are calculated and combined. Above
all, an index—value pair is defined by ¥ = (t, p), in which
T represents the index of p and p represents an element of
the resultant feature vector generated from a single feature in
D. Then, the weights calculated by d;x (k =1,2,...,m) are
multiplied continuously, denoted by p = [[}_; @ik p(Px =
1 or 2). The corresponding element index t of the aggregated
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Fig. 2. Procedure of SE, including weight calculating and weight combining.
For weight calculating, for each element d;x in d; € D, the index n;x
of the bin along the kth dimension and the weights wj 1, wjk 2 that
measure proximity to its bin boundaries are calculated. For weight combining,
the weights from different dimensions are multiplied sequentially, and the
obtained value represents an element of the aggregated feature vector. The
index of the element is calculated by the bin index n;x, as given in (3).

feature vector is calculated by the bin index n; ;. Specifically,
7 is calculated by a linear combination of 7; x

m

m
t=1+> | [] (g +1) ] m 3)
k=1 g=k+1
where
iks if =1
M = Nik . Dk @)
nixk+1, if pr =2.

The length ny of f is calculated by [];_; (nx +1).
Meanwhile, since the two weights are calculated by a 1-D
element, there are 2™ combinations of weights in total
(e.g., [32, Table I] shows all the combinations and the
corresponding indices when aggregating 3-D features). Then,
the tth element in f is added by p/n for each combination.
Next, the aggregated feature vector f of D is calculated
by accumulating results of all features in D. Finally, f is
normalized by L2 normalization.

Compared with the traditional statistic-based method,
SE makes a better fit to the feature distribution in each
dimension and thus, has better distinguishability. However,
SE still has three main limitations, which restrict its
application in PR with different types of input features.

1) In SE, two preset thresholds ;" and 4;"** are required

for dividing bins. However, for most local descriptors
extracted from images or LiDAR data, determining these
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Algorithm 1 Soft Encoding
Input: a set of features D = {d;,i = 1,2,---,n}, where
d; = [diy,di>, - ,din]T € R™. The range of features
in each dimension and the number of dividing intervals
are given manually, denoted by R = {{d'"", d,:”i"}, k =
1,2,--- ,m}and N = {n;, k= 1,2, --- , m}, respectively.
Output: an aggregated feature vector f = {f,,p =
1,2,--- T~ (n; + 1)} to describe D.
1. for g =1:]"_, (nk + 1) do
2: fe=0
3: end for
4. fork=1:m do
5: 8 = dI" = d"") /n
6
7
8
9

Lk:{lk,j :dfln+j'8ksj209lv"' ,I’lk}
: end for
: for d; in D do

for d; ; in d; do

10: Nik = L(dix —d"") /5]
11: wik2 = (dik =l ) /%
12: @ikt = (b1 — dik) /S
13: end for

14 T = {o = (%, po)}, where 7p = 1 and py = 1.0
15: for k=1:m do

16: =g

17: for v = (7, p) in " do

18: T =7+ ([ (g + D) Miks p1 = p- @i

19: n =1+ (o g + 1) - g+ 1), p2 =
P - Wik

20: Y1 = (11, 01), Y2 = (72, 02)

21: [V =T"U{{1, ¥}

22: end for

23: r=r’

24: end for

25: for v = (7, p) in T" do

26: Jo=Jfr+p/n

27: end for

28: end for

29: Compute L-2 normalization for f

thresholds a priori is difficult, because the elements in
these descriptors might not have physical meanings, such
as ORBs or SIFTs. In addition, considerable parameters
to be set manually make SE difficult to tune in complex
situations.

2) SE is not adaptive to high-dimensional features. For
features with m dimensions, if k bins are counted for
each dimension, the aggregated vector is in R*+D",
As the dimension increases, the length of the vector
increases exponentially, which suggests that SE is
unsuitable for high-dimensional features.

3) SE encodes the element in each dimension equally,
neglecting that elements in different dimensions
may be strongly relevant or contain different
amounts of information. Therefore, feature vectors
aggregated by SE may contain much redundant
information.
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B. Adaptive Soft Encoding

ASE is an improvement of SE to provide it with
adaptability. ASE can aggregate any type of features with
any dimension and improve the distinguishability of SE.
Specifically, such as SE, ASE still utilizes combinations of
weights to aggregate features. However, ASE and SE are
quite different in dimension selection, weight calculation, and
result organization. In general, ASE includes two phases,
i.e., the training phase and the encoding phase. The training
phase include four steps, i.e., preprocessing model training,
subdimensional interval dividing, SD-GMM fitting, and ASE
tree construction. The encoding phase contains two steps,
including preprocessing and encoding using the ASE tree.
In comparison, the two steps of SE, i.e., weight calculating
and weight combining, are both included in the last step
encoding using the ASE tree, in which the ASE tree calculates
and combines weights adaptively, without the need to set the
boundaries manually.

1) Training:

a) Preprocessing model training: In ASE, input features
are normalized and orthogonalized using z-score and the
principal component analysis (PCA), respectively. In the
training phase, the parameters of z-score and PCA need to be
learned according to the distribution of features. Given a set of
features for training, denoted by D" = {d}",i = 1,2,...,n"},
where d' = [df.d,,....d", 1" € R", u; and o; are
calculated to represent the average and standard deviation of
n"™ number of features along the jth dimension. Then, the jth
element in d;" is normalized by
dr. — Wj

' L]
dv, =

4)
0j

The normalized set of D" is denoted by D"™. For PCA in
the training phase, the covariance matrix C of D' is first
calculated. Then, the eigendecomposition of C" is calculated
by C" = QA Q_l, where A = diag{\|, A2, ..., Ay} and O =
(41, G2, ..., qm]T, representing eigenvalues and eigenvectors
of C, respectively. Finally, the first m’ rows of Q7 are
selected and denoted by QT/, where the first m’ eigenvalues
account for more than 95% of the total eigenvalue. Then,
d¥ € D" is orthogonalized by d! = or -d". In this way,
dimension reduction and decorrelation of training features can
be achieved, and the preprocessed feature set is obtained,
denoted by D' ={d;,i =1,2,...,n"}.

b) Subdimensional interval dividing: In SE, the elements
of features in every dimension are utilized to calculate weights,
making aggregated vectors redundant. In ASE, in order to
reduce the redundancy, weights are calculated according to the
distribution of features in a subdimensional interval instead
of every dimension. First, the amount of information along
each dimension is analyzed in ASE. Then, N subdimensional
intervals are divided, making the information amount in each
subdimensional interval similar, as shown in Fig. 3. The
process of subdimensional interval dividing is summarized in
Algorithm 2.

First, two functions in Algorithm 2 are introduced. The
function BLOCK(d, ¢;, ¢;) in lines 1-4 of Algorithm 2 is
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Fig. 3. Subdimensional interval dividing in ASE. N subdimensional intervals
are divided, making each interval contain a similar amount of information.

to block elements in d with the indices from ¢ to ¢; to
generate a new subfeature d®. The function DIVIDE(D, &;, ¢;)
in lines 5-12 of Algorithm 2 is to make each feature d in D
perform function BLOCK(d, ¢;, {;) to generate a new set of
subfeatures.

Line 13 in Algorithm 2 is to compute the information
amount in each dimension of D’. Specifically, the eigenvalues
of the covariance matrix of DY are used to evaluate the
dispersion of orthogonalized features in the corresponding
dimension. In theory, the larger the eigenvalue is, the more
dispersed the distribution of features along the corresponding
dimension is and the stronger the distinguishability of features
along this dimension is. Therefore, in the training phase, the
percentage of each eigenvalue corresponding to a dimension
relative to the sum of all eigenvalues is utilized for evaluating
the amount of information along this dimension, which is
calculated by

Xk = M Z/\k, k=1,2,....m (6)
k=1

where k represents the kth dimension. Lines 14-21 in
Algorithm 2 are used to divide each feature into N
number of subdimensional intervals. Specifically, in order to
make contributions of different subdimensional intervals keep
similar, the information in different subdimensional intervals
needs to be approximately equal to reduce the redundancy of
results. Therefore, a set of subdimensional interval boundaries
Z={¢e{l,2,...,m'},i =0,1,..., N} is obtained, where
¢; satisfies

& =1, i=0
& i
; —argmin £, S.t. > — and 7
¢ = argmin ¢ gxk v (7
5 ef2,3,...,m'}, i >0.

Finally, the preprocessed training feature set D' is divided
into N subfeature sets according to subdimensional interval
boundaries in Z, denoted by Qp = {Di”,i =1,2,...,N},
where D!’ = DIVIDE(D', §;_1, §).

c) SD-GMM fitting: After subdimensional interval divid-
ing, subfeatures in each subdimensional interval need to be
modeled, to calculate the weights to reflect to distribution
characteristics of subfeatures. Considering diversity of the
distribution, GMM is selected to model subfeatures in each
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Algorithm 2 Subdimensional Interval Dividing

Input: the training feature set D' after preprocessing,
the dimension m’ of features, the eigenvalues A =
diag{\i, A2, -+ -, Ay} obtained by the PCA, the number
N of subdimensional intervals.

Output: a set of information amounts X = {x;, k =
1,2,---,m’}, subdimensional interval boundaries Z =
{¢;,i = 0,1,---, N} and the divided sub-feature sets
Qp ={D!',i=1,2,---, N}

1: function BLOCK(, ¢&;, ¢;)

2: d* =[dg,dg41, -+ . dg;—1])" where dy is k-th element
ind.

3: return d°

4: end function

5: function DIVIDE(D, &;, ¢;)

6: D=0

7 ford =[d,,d», - ,d,]" in D do

8 d® = BLOCK(, ¢;, &;)

9

: D* = DS U {d*}
10: end for
11: return D*

12: end function
13X =300 M

4:i=1, ¢=0, ~=0
15: for k=1:m' do
16: Xe = MN/X,  v=94+ Xk

17: if v > i/N then

18: &=k
19: i=i+1
20: end if

21: end for

22: fori=1:N do
23: D{/ = DIVIDE(Dt, Cic158i)
24: end for

subdimensional interval, and the resultant model is called SD-
GMM. For each subfeature set D!’ in p, subfeatures in D!
can be represented by an SD-GMM ¢;, which is composed
of K; components. The jth component in G; contains three
parameters o; j, pi,j, and X; ;. The probability density of
GMM is calculated by

K;
px) =D a; N(xln;. ;) ®)
j=0
where
Nlpj. Ej) = —————e #lem el )
@2m): - |%;]?
In (8), K; is computed with the maximum of Bayesian
information criterion (BIC) in the D', denoted by

K; = argmin | K - In(n,) _z'iln(p(d;))
=0

Jj=
Nmax

(Hj‘:l K- ZN_i)

st. K; € 12,3,..., (10)
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where Npax 1S a manually set parameter, representing
the desired maximum length of the aggregated vector.
After K; is computed for each subdimensional interval, N
numbers of GMMs are fit using the expectation—maximization
(E-M) algorithm. It is worth pointing out that, even if multiple
GMMs need to be fit, fitting low-dimensional subfeatures only
requires a few iterations to converge for each SD-GMM fitting.
In addition, the small number of components in each SD-
GMM further contributes to a more efficient model fitting.

d) ASE tree construction: In ASE, in order to improve
the efficiency, the fitted SD-GMMs are organized by a
tree structure called the ASE tree for aggregating features,
as shown in Fig. 4. The ASE tree has N + 1 levels. The
root node is defined by 7y, and the ith (i > 0) level has
[T, K: nodes. The child nodes of the root nodes correspond
to the SD-GMM of the first subdimensional interval, and each
child node corresponds to a component of this SD-GMM.
Similarly, the set of child nodes of any node in the ASE tree
corresponds to an SD-GMM, and nodes in the ith level have
their corresponding components in the ith SD-GMM. The jth
node 7; ; in the ith level has three types of attributes, i.e., the
aggregated element «; ;, the weight ¢; ;, and the parameters
a; j, Ri,j, and X; ;. The parameters of the jth node in the ith
level are equal to those of the | j/K;|th component in G;, and
they are utilized for calculating ¢; ;.

Specifically, ¢; ; and «; ; are intermediate results used for
feature aggregation, where (; ; represents the weight calculated
based on the probability density of the corresponding
SD-GMM, and «; ; represents the aggregated result. All the
ki, ; values at the same level of the ASE tree are concatenated
to form a feature vector, which represents the distribution
of features across the first j subdimensional intervals. The
set of feature vectors from different levels are denoted by
F. The feature vector in the ith level is generated from the
vector in the (i — 1)th level and contains more information
(the information of feature distribution in the ith dimensional
interval) than its up-level vectors. Therefore, with i increases,
the corresponding vector is with longer length and contains
more information. Meanwhile, the length of vector in the last
level of the ASE tree can be limited into Ny., which is a
manually set parameter introduced in Section III-B3.

For the root node, koo and ¢y are both set to 1 initially.
For the other nodes, «; ; and (;; are calculated during the
encoding phase, which is introduced in detail in Section I1I-B6.
In addition, each tree node can visit its next brother node and
child nodes.

2) Encoding:

a) Preprocessing: Preprocessing is for orthogonalizing
and decorrelating features using z-score and PCA. Given a
set of input features D = {d{°,i = 1,2,...,n*} for the
encoding phase, each feature in D* is denoted by d/° =
[d;fcl, d;f”z, e, dffn]T € R™. First, for each element dfj in d;’”,
it is normalized according to (5). As a result, the normalized
feature set D is obtained. Then, D¢ is orthogonalized by
each feature in D performing d® = Q7 - d*. Finally,

the preprocessed feature set D¢ = {d/,i = 1,2,...,n*}
is yielded, and each feature in D¢ is denoted by
df =dfy, dfy, ... df, 0" € R,
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Fig. 4.  Structure of the ASE tree with each tree node containing five

attributes. «; j, mi,j, and X; j represent three parameters corresponding to
a component in the ith SD-GMM, utilized to calculate ¢; ;. ¢; j and «;, ; are
intermediate results for feature aggregation, calculated using (11) and (12) in
the encoding phase, respectively. After encoding, the «; ; values at the same
level of the ASE tree are concatenated into a feature vector, representing the
distribution of features across the first j subdimensional intervals.

b) Encoding using ASE tree: In the encoding phase of
ASE, the constructed ASE tree is used to calculate the weights
of each input feature in each subdimensional interval, which
is summarized in Algorithm 3. For each feature df in D, it is
first segmented into a set of subfeature according to the set
of subdimensional interval boundaries Z, denoted by D] =
{dl?’j = BLOCK(},¢j-1,¢;),j = 1,2,..., N} and dis,j =

: . : T o
(&} i oo ondi 17> Where di ;= df . Next,
D7 is fed into the ASE tree for performing weight calculating.
For instance, dis j is fed into the kth node in the jth level to

calculate its weight as follows:
ok -N(dis,jlﬂj,k, Zj,k)
K; s
Zq:l Ujq 'N(di,jm'jsq’ Zj,q)

Y

i )
Lik = bLi—1,1k/K;]

where L;_ 1.lk/k,) Tepresents the weight of the parent node.
When all features in D¢ are fed into the ASE tree, each
element of the aggregated vector is accumulated by

nee
Kix = i
Jik = Jk*
i=0

Finally, all «;; values in the jth (j > 0) level of the
ASE tree are concatenated into a feature vector, which is
generated by combining the weights calculated according
to the distribution of features in the first j subdimensional
intervals. It is denoted by f; = [f1, fa. .. ., fl_[;;:l K‘,]T’ where

12)

fe=rKjx/ (ZLf:’ ‘] sz DY 2 The vectors obtained from different
levels in the ASE tree constitute a set of feature vectors
denoted by F = {f;,j = 1,2,...,N}. As j increases,
the longer the length f; has, the more the information

subdimensional intervals f; contains.
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In fact, the way to combine the weights of ASE is the same
as that of SE, except that ASE organizes results with a tree
structure, which brings three advantages. First, the ASE tree
can utilize its tree structure to generate a set of feature vectors
with different lengths and different amounts of information,
which correspond to different levels in the ASE tree. The
feature vector in the jth level is generated from the vector
in the (j — 1)th level and contains overall information of the
(j — Dth level, as well as the new information in the jth
level. Therefore, the feature vectors have different description
capabilities, which can be used to accelerate the search phase
in PR.

Second, since weights need to be calculated for a feature in
different subdimensional intervals, as the number of features
in D¢ gets larger, the encoding process may be less efficient.
To solve the issue, the ASE tree performs dynamic pruning in
the encoding process, which greatly improves the efficiency.
Specifically, the weight « ; of the node 7 ; is in the range
of [0, 1]. When ¢ ; is close to 0, the weights of its child
nodes are also close to 0, since they must multiply ¢ ;. That
means contributions of 7; ; and its child nodes to the result
are extremely low. Therefore, a pruning threshold 6, is used.
When ¢ ; < §,, the calculation processes of 7 ; and its child
nodes are ignored, and ¢ ; is set to 0. In the experiments, &,
is set to 107>, which ensures the distinguishability of results
and improves the efficiency.

Third, with the tree structure, ASE does not need to
calculate indices of aggregated vectors, which can lead to a
more efficient encoding phase.

IV. ASE-BASED PR
A. Problem Definition

For a place P, sensor data Dp are obtained using the
onboard sensors of the robot, e.g., cameras or LiDARs. Then,
a set of local descriptors Lp = {l;,i = 1,2,...,n;} is
extracted from Dp, which represents appearance character-
istics of P. For the current place P., if a set of similar
local descriptors is retrieved from the historical data, the
robot is considered to have visited P, previously. In order
to retrieve the similar set of local descriptors more efficiently,
these local descriptors are inputted into the ASE method and
aggregated into a set of feature vectors, each of which is a
global descriptor to represent P, with low dimensions. As a
result, the set of global descriptors is obtained, denoted by
Op = ASE(Lp), where 0p = {gh,i =1,2,..., N} and g&,
is the feature vector in the ith level of the ASE tree. So far,
PR is converted into the problem of retrieving the most similar
set of global descriptors Op, to Op, from historical sets of
global descriptors. If the similarity between Op, and Op, is
high enough, P. and P; are considered to be the same place.
Otherwise, P, is considered to be a new place which the robot
has not visited before.

As introduced in Section III-B, in ASE, although a simple
training process is required to divide subdimensional intervals
and fit SD-GMMs, the ASE-based framework can meet the
requirements of online training in PR due to the fast training
process. Hence, for the ASE-based PR framework, the first
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Algorithm 3 Encoding Process of ASE
Input: the feature set D¢ after preprocessing, the dimension
m' of features, the root node 7y of the ASE tree, the
pruning threshold §,
Output: the set of aggregated feature vectors F =
{fi»j=12,---,N}
: function COMPUTEWEIGHT(7;

ks DY)

1

2 if PARENT(7; ;) exists then

3 Find the Jj-th element d ; ; from D;}
4: Compute the weights ¢ ; of 7; ; using d? by D
5: if 1j; <4, then

6: ljk = 0

7 end if

8 end if

9 if (; #0 then

10: Q7 = CHILDREN(7] ;)

11: for 7 in Q7 do

12: COMPUTEWEIGHT(7, D7)

13: end for

14: end if

15: end function

16: for df in D¢ do

17: D; = {d,{j = BLOCK(d{,¢j—1,¢j),j=1,2,---, N}
18: COMPUTEWEIGHT (70, D)

19: for j =1:N do

20: for k=1: H£=1 K, do

21: Compute the «;; in the feature vector by (12)
22: fi =« ik

23: end for

24: end for

5 fi=Unf k)

26: Calculate L-2 norma'hzauon for f;

27: end for

K, frames of data acquired by sensors are utilized for online
training of ASE. After training, the proposed framework
can utilize the constructed ASE tree to generate a set of
feature vectors as global descriptors and perform PR using
a hierarchical matching strategy.

B. Hierarchical Matching

As more places are visited, the computational time
for matching the current global descriptors to historical
ones becomes longer. The ASE tree structure describes a
place using multiple global descriptors, which vary in the
length and description capability. Benefiting from the high
distinguishability of the ASE-generated descriptors, in many
instances, historical places exhibiting significant appearance
differences with the current place can be efficiently filtered
out by performing a shorter length global descriptor matching.
Therefore, a hierarchical matching strategy is designed to
improve the efficiency of PR significantly without sacrificing

precision.
For a place P, the set of global descriptors Op =
(ghi=1,2,....N} (Igh] = Hi-zl K;) aggregated by ASE
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is available for matching with the historical set of descriptors.
The Euclidean distances between the global descriptors in
the same level are utilized to evaluate the similarity of two
places. The smaller the distance between gP and g,P is, the
more likely place Py is the same with P;. Spemﬁcally, the
amount of information contained in each global descriptor gp
is evaluated by

Gi
%= X (13)
J=l1
As i gets larger, gfp contains richer information and has longer
length.

In the hierarchical matching strategy, most of unmatched
places are quickly filtered out by global descriptors with short
lengths. In contrast, if global descriptors with longer lengths
are used for matching, more accurate recognition results can
be obtained. Assuming that Ny historical places have been
visited, the proposed strategy utilizes the global descriptor
ng obtained in the ith level of the ASE tree to filter out
L(Ng — 1) -~; ] number of unmatched historical places, where
v; (0 < < 1) represents the information amount to the ith
level of the ASE tree. As a result, Ny — | (Ny —1)-7; ] number
of matched places is reserved for matching in the next level. At
each level of matching, the information amount is employed
to determine the number of candidates retained for the next
level of matching. This strategy offers greater flexibility and
adaptability compared with using a fixed threshold. Finally,
the above matching process is performed hierarchically until
the potentially identical place to the current place is obtained
through matching global descriptors in the last level of the
ASE tree.

The hierarchical matching strategy improves the retrieval
efficiency in PR. Theoretically, assuming that K; in each
interval is set to a constant K, hierarchical matching is
approximately 1/(3°1 (N 41 —i)/(N - KN=1))) faster than
direct matching. As K gets larger, improvement in matching
efficiency is closer to N times higher than direct matching.

V. EXPERIMENTS

In this section, extensive experiments are carried out
on the public data sequences KITTI [34] and in real-
world scenes. Specifically, the experimental setup is first
introduced in Section V-A. Then, ASE is compared with four
feature aggregation methods in Section V-B. In Section V-C,
the proposed framework for PR is compared with the
state-of-the-art PR methods using images and LiDAR data,
respectively. The efficiency of the ASE-based PR framework
is evaluated in Section V-D. Finally, the fusion experiment of
images and LiDAR data is carried out in Section V-E.

A. Experimental Setup

In this article, the KITTI and self-built NKU datasets are
utilized to evaluate ASE and the ASE-based PR framework.
In the KITTTI dataset, five sequences are chosen, including 00,
02, 05, 06, and 07, which contain 4541, 4660, 2671, 1101,
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and 1101 frames of images and LiDAR data, respectively.
Each image has 1271 x 376 pixels, and each of LiDAR data
has 12000 scan points approximately, of which the maximal
range is about 100.0 m. The images and LiDAR data in
KITTI are collected by a stereo camera and a Velodyne
HDL-64H LiDAR installed on a car moving on a street.
In addition, the images and LiDAR data are preprocessed
synchronously. In this article, only the left camera is utilized in
the experiments. For the real-scene dataset NKU, 311 frames
of images and LiDAR data are collected by a monocular
camera and a Velodyne HDL-32 LiDAR installed on a
Pioneer3 DX mobile robot moving in an indoor corridor. Each
image has 1920 x 1080 pixels, and each of LiDAR data has
60000 scan points approximately, of which the maximal range
is about 40.0 m.

In the experiments, for the KITTI dataset, two frames of
data are considered to be collected from the same place if their
distance is less than 6.0 m and different places if their distance
is more than 6.0 m, such as [30]. For the NKU dataset, the
ground truth is marked manually. In order to avoid repeated
recognition of the same place, adjacent 50 frames of data
are excluded from the retrieval scope. Under this situation,
there are 817, 266, 513, 271, 86, and 184 positive samples in
KITTI 00, 02, 05, 06, 07, and NKU sequences, respectively.
All the experiments are carried out on a computing platform
with Intel 17-8700 2.6-GHz CPU, 8-GB memory, and Ubuntu
18.04 operating system. All the experiments do not utilize
GPU acceleration. In addition, the open source code of ASE
is released online,' and the self-built dataset NKU is publicly
published.?

B. Evaluation on ASE

In this section, ASE is compared with four unsupervised
feature aggregation methods, which are widely used in PR,
including BoW [12], incremental BoW (IBoW) [30], VLAD
[13], and SE [11]. In the experiments, diverse methods are
employed to extract local descriptors from data obtained from
different sensors. These local descriptors are subsequently
aggregated into global descriptors. As new sensor data are
captured, ASE is continuously utilized to generate global
descriptors, which are then compared against historical global
descriptors to determine if the current place matches any
previous one. Finally, by adjusting the matching threshold,
multiple pairs of precision and recall values are obtained
to plot the precision-recall curve. For BoW, K-means is
utilized to cluster features into multiple clusters. Then,
features in each cluster are counted for generating feature
vectors. IBoW incrementally reclusters small amounts of
features when the number of features in one BoW tree
node is larger than the preset thresholds. VLAD expands
BoW by adding the distance of each feature from its cluster
center. SE analyzes the distribution of features in different
dimensions and calculates weights for measuring to what
extent a feature belongs to the corresponding bin. In order

![Online]. Available: https:/github.com/wdyiwdwd/ASE-Encoder
2[Online]. Available: https://drive.google.com/file/d/1nzscGal VHEMyFdD
GOFSkaeK_FW5U2w4t/view ?usp=sharing
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to evaluate the distinguishability of aggregated results, the
same set of local descriptors is aggregated by different feature
aggregation methods to generate global descriptors. Then,
PR is performed by matching the resultant global descriptors.
Precision—recall performances are adopted to quantitatively
evaluate the distinguishability of these methods.

Since BoW, VLAD and ASE need to be trained, in this
experiment, the first 10% data in the sequences are selected
for training. Then, the remaining data are utilized for feature
aggregation and matching. In contrast, IBoW and SE do not
require a training phase. Thus, it directly performs feature
aggregation and matching. KITTT 05, 06, and 07 are selected
in the experiments. For each sequence, ORBs and SIFTs are
extracted from images, while 3-D SUs and SRDs are extracted
from LiDAR data, respectively. In general, as the length of
the aggregated feature vectors gets longer, the feature vectors
are more informative and distinguishable, and matching them
with other feature vectors takes more computational resources.
Therefore, in order to ensure fairness of the experimental
comparison, lengths of aggregated vectors in four methods
need to be approximately equal to each other. For this
reason, some parameters are set to ensure the feature vectors
aggregated by each method have a maximum length, denoted
by Lmax, Which is set to 10000 in our experiments. For
instance, the clustering number of BoW and VLAD and
the maximum clustering number of IBoW are set to Ly,
| Lmax/m], and Lpx, respectively, where m is the dimension
of features. The number of bins in SE is set to LLfrluf,:")J — 1.
For ASE, Npax is set to Lp.x, and N is set to 7. Fig. 5
shows the precision—recall curve of PR using the global
descriptors aggregated by different methods with different
KITTT sequences.

Compared with BoW, IBoW, and VLAD, ASE obtains better
results for aggregating different local descriptors extracted
from different types of sensor data in almost all sequences.
Only in KITTI 06 sequence, ASE performs a little worse
than VLAD for aggregating SRDs. Compared with the
clustering-based methods, although ASE employs the PCA
for dimension reduction, more than 95% of information
is retained in features while discarding the information
susceptible to noises. In addition, ASE utilizes multiple SD-
GMMs to fit the distribution of features in subdimensional
intervals and combines weights from different subdimensional
intervals to generate vectors, which retains more information
than clustering-based methods. Compared with SE, ASE can
aggregate features with much higher dimensions. For instance,
when aggregating ORBs with 32 dimensions, SIFTs with
128 dimensions, and SRDs with 125 dimensions, the weights
calculated by SE in every single dimension are combined,
which makes the lengths of aggregated vectors (greater than
232 2128 and 2'%%) exceed the storage capabilities of our
computing devices. In contrast, ASE can limit the length of the
feature vector to Np,x and obtain good results for all types of
features, which demonstrates the superiority of ASE over SE.

In addition, the training time and total aggregation time
for visual descriptors ORBs and LiDAR descriptors 3-D
SUs are evaluated on the KITTI 05 sequence, as shown
in Tables I and II, respectively. When the robot visits a
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Fig. 5. Precision-recall curves of PR using the global descriptors aggregated by different methods on different sequences. (a) KITTI 05 ORB.
(b) KITTI 05 SIFT. (c) KITTI 05 3-D SU. (d) KITTI 05 SRD. (e) KITTI 06 ORB. (f) KITTI 06 SIFT. (g) KITTI 06 3-D SU. (h) KITTI 06 SRD.
(i) KITTI 07 ORB. (j) KITTI 07 SIFT. (k) KITTI 07 3-D SU. (1) KITTI 07 SRD.

completely unknown environment, a fast training process is TABLE 1

required to efficiently model appearance characteristics of the TRAINING AND TOTAL AGGREGATION TIME (S) OF DIFFERENT
environment and understand complex situations and further METHODS TO AGGREGATE ORBS ON THE KITTI 05 SEQUENCE
to quickly response to potentially hazardous conditions. For Training time ~ Total aggregation time  Totals
ASE, the most time-consuming step is the SD-GMM fitting, Bow 474.9959 67.3893 542 3852
which usually takes more than 90.0% of the total training IBoW 0.0 362.1420 362.1420
time. However, owing to PCA and dividing features into VI;};D 45.9842 72.1170 118.1012

multiple subdimensional intervals, ASE only needs to use low-
dimensional subfeatures to fit SD-GMM models, where each
SD-GMM model has only a small number of components,
making this step quickly converge after a few iterations.
In addition, due to the independent fitting process of each with ASE takes a little longer time than BoW. However,
SD-GMM model, the parallel implementation of ASE is not the improvement in the precision and recall of ASE results
affected by conflicts caused by multithreaded, which further can compensate for the slight increase in aggregation time.
improves its efficiency. Meanwhile, because KITTI 05 contains 2671 frames of data,
For both ORBs and 3-D SUs, the training time of ASE is the average aggregation time for ORBs and 3-D SUs in KITTI
7.2305 and 10.1199 s, respectively, which is much smaller 05 are only 0.0378 and 0.0086 s, respectively, which ensures
than that of BoW and VLAD. That means that ASE can that ASE is well suited for online PR with images or LIDAR
be trained online for applications in unknown environments. data.
Although IBoW and SE do not need to be trained, IBoW It is worth pointing out that ASE not only has adaptability
has to recluster features in the aggregation process, and thus, to different types and dimensions of input features, but also
its aggregation time is much longer than other methods. can generate an effective model with only a small amount of
Likewise, although SE performs efficiently when aggregating training data. The impact of the amount of training data on
3-D SUs, it cannot aggregate ORBs with 32 dimensions, the performances of three methods with training is evaluated
which limits its generalizability. In addition, aggregating ORBs ~ when aggregating ORBs and 3-D SUs in KITTI 05, as shown

ASE 7.2305 101.0894 108.3199
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TABLE I

TRAINING AND AGGREGATION TIME (S) OF DIFFERENT METHODS
TO AGGREGATE 3-D SUS ON THE KITTI 05 SEQUENCE

Training time  Total aggregation time Totals
BowW 198.5705 76.8180 275.3885
IBoW 0.0 192.3412 192.3412
VLAD 32.0219 83.9228 115.9447
SE 0.0 13.4620 13.4620
ASE 10.1199 22.9706 33.0905
= / wb L
£ ) g | /
.5 e / ——BoW 5 os // ——BoW
s LA ~oviap| | =Y ~—VLAD
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Fig. 6. Impact of the amount of training data on the performances of three
unsupervised methods for aggregating (a) ORBs and (b) 3-D SUs, in which
the x-axis represents the percentage of the training data to all data, while the
y-axis represents the maximum F'1-score of PR using the aggregating vectors.

in Fig. 6. ASE achieves relatively stable results when only
the first 1.5% of the data are used for training. In contrast,
VLAD and BoW require more than 4.0% of the data for
training to obtain stable results. For different amounts of
training data, performances of ASE feature vectors are more
stable than those of the other two methods. This is because
VLAD and BoW rely heavily on clustering results. If similar
features are clustered into different clusters, they would yield
a serious impact on results. In comparison, ASE uses SD-
GMMs to calculate probability densities as weights, which
ensures that the weights calculated by the similar features
are approximately equal to each other. Therefore, ASE can
generate a more stable environment representation model in
various scenes.

C. PR Evaluation

Unlike the experiments in Section V-B, where only the
feature aggregation methods are different, in this section, the
proposed framework is compared with six state-of-the-art PR
methods in KITTI 00, 02, 05, 06, 07, and NKU sequences
using precision—recall curves, such as [23], [24], [27], [30],
of which GIST [20], FAB-MAP [14], and the image-sequence-
based PR (ISB-PR) [27] use images, while the SHOT [18],
scan context (SC) [24], and SRG-PR [30] use LiDAR data.
They include both local descriptor-based methods (ISB-PR,
FAB-MAP, SHOT, and SRG-PR) and global descriptor-based
methods (GIST and SC).

GIST is a global descriptor extracted from images for
describing the spatial structure of the environment. For FAB-
MAP, SURFs are extracted from images and then aggregated
into a binary global descriptor by a probabilistic BoW
approach. For ISB-PR, PIRFs are extracted from image
sequences, and BoW is utilized for matching the current and
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historical data. SHOT is a LiDAR local descriptor based on the
histogram, which counts the normal vectors in the normalized
spherical area. SC is a global descriptor extracted from LiDAR
data, which counts the highest points in the fan-shaped area on
the xy plane. SRG-PR segments LiDAR data and constructs an
SRG to represent the environment; then, PR is achieved with
SRG matching. In implementation of GIST, FAB-MAP, and
SC, we use the open-source code released by the authors, and
parameters are set as the default values. For SHOT, a C++
version implemented in the point cloud library (PCL)? is used.
For the proposed framework, the parameters of ASE are set
as the same values as those in Section V-B.

For PR with images or LiDAR data, precision—recall
curves of different methods are shown in Fig. 7. Meanwhile,
maximum Fl-scores of each method using images and
LiDAR data are listed in Tables III and IV, respectively.
GIST is limited by the descriptive ability of the structural
characteristics, and thus, it does not obtain the best
performance in any sequence. FAB-MAP is limited by the
distinguishability of vectors aggregated by BoW, making
the recognition results worse than those of the proposed
framework in all sequences. ISB-PR performs well in all
sequences and obtains best results in KITTI 06 and NKU,
because ISB-PR utilizes an ESN to model image sequences,
which contains much richer information than a single image.
However, ISB-PR is affected by the difference in the angle
of view in a part of image sequences, which results in more
missed detection. In comparison, the proposed framework
benefits from the strong distinguishability of feature vectors
aggregated by ASE, such that the best performance can be
achieved in KITTI 00, 02, 05, and 07 when aggregating
SIFTs and ORBs, which demonstrates the effectiveness of
the proposed framework. In addition, in all sequences, the
ASE-based framework can achieve good recalls at 100%
precision. For instance, although the maximum F'1-scores
of the ASE-based method are a little lower than those of
ISB-PR in the NKU sequence, the recalls at 100% precision
are 15.89% and 9.37% better than those of ISB-PR when
aggregating ORBs and SIFTs, respectively.

For the results using LiDAR data, SHOT does not obtain
good performances in all sequences, because it is not robust
to subtle changes caused by noises. Performances of SC are
good in KITTI 00, 02, 05, and 06. However, SC only counts
the highest point in each area. As a result, distinguishing
structured environments in NKU is difficult for SC. SRG-
PR obtains the best performance in KITTI 06 and 07.
However, it relies heavily on the segmentation results of point
clouds. For instance, in KITTI 02, there are lots of bushes
in the environment, which causes difficulty in point cloud
segmentation. As a result, SRG-PR obtains poor performances.
In contrast, the proposed framework for aggregating 3-D
SUs performs well in each LiDAR sequence. It obtains the
best performance in KITTI 00, 02, 05, and NKU sequences.
Meanwhile, the proposed framework for aggregating SRDs
also yields good results in KITTI 00, 05, 06, 07, and NKU.
It is worth pointing out that the proposed framework for

3[Online]. Available: http://pointclouds.org
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Fig. 7.

Precision—recall curve of each method for PR with images or LiDAR data. (a) KITTI 00 using images. (b) KITTI 00 using LiDAR data. (c) KITTI

02 using images. (d) KITTI 02 using LiDAR data. (e) KITTI 05 using images. (f) KITTI 05 using LiDAR data. (g) KITTI 06 using images. (h) KITTI
06 using LiDAR data. (i) KITTI 07 using images. (j) KITTI 07 using LiDAR data. (k) NKU using images. (I) NKU using LiDAR data.

TABLE III
MAXIMUM F1-SCORES OF EACH METHOD FOR PR WITH IMAGES

TABLE IV
MAXIMUM F1-SCORES OF EACH METHOD FOR PR WITH LIDAR DATA

FAB- ASE ASE ASE ASE

GIST MAP ISB-PR (ORB) (SIFT) SHOT SC SRG-PR (SRD) 3D SU)
KITTI 00 09114 0.8774 0.9273 0.9156 0.9333 KITTI 00 0.9332 0.9459 0.9543 0.9412 0.9625
KITTI 02 0.8436 0.5781 0.8133 0.8380 0.8526 KITTI 02 0.7841 0.8500 0.7623 0.5895 0.8515
KITTI 05 0.8485 0.7996 0.8741 0.8319 0.9006 KITTI 05 0.8856 0.9408 0.9481 0.9360 0.9482
KITTI 06 0.9716 0.8752 0.9962 0.9338 0.9870 KITTI 06 0.8945 0.9655 0.9907 0.9533 0.9888
KITTI 07 0.6420 0.7362 0.7976 0.8284 0.8235 KITTI 07 0.6939 0.6769 0.8670 0.6936 0.8098
NKU 0.6667 0.6536 0.7665 0.6807 0.7279 NKU 0.7772 0.7095 0.8000 0.7250 0.8036

aggregating SRDs performs a little worse than SRG-PR,
because in SRG-PR, correspondences are established for SRDs
by precise but time-consuming graph matching, while in the
proposed framework, only the distribution of SRDs is fit.
Although no one-by-one matching of local descriptors is used,
our framework still obtains good results with less computing
resources.

Fig. 8 shows the visualization results of the ASE-
based framework at Rp, (i.e., maximum recall at 100%
precision) when aggregating SIFTs and 3-D SUs in KITTI
sequences, respectively, where true positives are marked by
red and false negatives by black, such as [26]. In all the
sequences, the proposed framework recalls most of positive

samples (red trajectory) along the revisited trajectory (red and
black trajectories), demonstrating the ASE-based framework
performs well in the condition without false alarms. Therefore,
the proposed framework can be also used for loop closure
detection in a SLAM system.

D. Evaluation on Efficiency

In this section, the average computational time of different
methods is evaluated, including average description time
and average search time. As the sensor data are acquired,
the PR methods describe and represent the data and
stored the descriptive information. After describing the data of
the current frame, similar data are retrieved from the historical
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Fig. 8.

Visualization results of the proposed framework at R, when aggregating SIFTs and 3-D SUs, where true positives are marked by red and

false negatives by black. The proportion of the red trajectory to the total red and black trajectories represents the maximum recall at 100% precision.
(a) KITTI 00 SIFT. (b) KITTI 02 SIFT. (c) KITTI 05 SIFT. (d) KITTI 06 SIFT. (e) KITTI 07 SIFT. (f) KITTI 00 3-D SU. (g) KITTI 02 3-D SU. (h) KITTI

05 3-D SU. (i) KITTI 06 3-D SU. (j) KITTI 07 3-D SU.

TABLE V

AVERAGE COMPUTATIONAL TIME (S) OF DIFFERENT
METHODS WITH IMAGES IN KITTI 05

Description time  Search time  Total time
GIST 0.1619 0.0191 0.1790
FAB-MAP 0.0955 0.0921 0.1876
ISB-PR 0.3874 0.0127 0.4001
ASE (ORB) 0.0509 0.0097 0.0606
ASE (SIFT) 0.0858 0.0113 0.0971
TABLE VI

AVERAGE COMPUTATIONAL TIME (S) OF DIFFERENT
METHODS WITH LIDAR DATA IN KITTI 05

Description time  Search time  Total time
SHOT 0.5589 0.1042 0.6631
SC 0.1386 0.3274 0.4660
SRG-PR 0.2124 0.2355 0.4479
ASE (SRD) 0.1846 0.0132 0.1978
ASE (3D SU) 0.0881 0.0094 0.0975

data using the descriptive information and then determine
whether the robot visits the same place. The description
time represents the time consumed to model the sensor data,
while the search time represents the time spent on retrieving
similar data from the historical records. In our experiment,
the average computational time in KITTI 05 sequence for
different methods with images and LiDAR data is listed
in Tables V and VI, respectively.

The description of the ASE-based PR framework is more
efficient using both images and LiDAR data because of the
high efficiency of ASE. Meanwhile, hierarchical matching
makes the proposed framework more efficient for search, even
better than matching the global descriptor GIST with only
1536 dimensions. Therefore, the efficiency of the proposed
framework can meet the requirement for online PR even with
high frequency of data collection. In addition, it is worth

— Hierarchical matching
— Direct matching
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Fig. 9. Box plot of the search time with hierarchical matching and direct
matching, respectively. The middle line represents the median of the search
time. The upper and lower boundaries of the box depict the upper and lower
quartiles, respectively. The upper and lower short lines out of the box represent
the maximum and minimum of the search time, respectively. The red symbols
depict some outliers caused by increasing the search space in KITTI 02.

pointing out that the proposed framework takes slightly long
time for description using SRDs, because the extraction of
SRDs is time-consuming. In fact, the average aggregation time
of ASE for SRDs takes only 0.0374 s in KITTI 05.

Finally, performances of hierarchical matching are evaluated
in KITTI 02, 05, and 07 sequences. In the experiment, 3-D
SUs are aggregated into global descriptors by ASE. The box
plot of the search time with hierarchical matching and direct
matching is drawn in Fig. 9. Moreover, the corresponding
maximum F1-scores are listed in Table VII. The results
demonstrate that the hierarchical matching strategy does not
have an obvious impact on the precision—recall performances
of PR. Nevertheless, it can greatly improve the efficiency
of the search process, including the average, maximum, and
variance of the search time. Moreover, the improvement
on efficiency is close to N times (N is set to 7 in the
experiments), which is consistent with the theoretical analysis
in Section IV-B.
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TABLE VII

MAXIMUM F1-SCORES WITH OR WITHOUT THE HIERARCHICAL
MATCHING STRATEGY IN EACH SEQUENCE

KITTI 02 KITTI 05 KITTI 07
With the strategy 0.8515 0.9482 0.8098
Without the strategy 0.8604 0.9324 0.8025
Differences -0.0089 +0.0158 +0.0073
TABLE VIII

MAXIMUM F1-SCORES OF PR USING THE FUSED AND INDIVIDUAL
DESCRIPTORS ON KITTI 05 AND 06 SEQUENCES

SIFTs SRDs Fusion
KITTI 05 0.9006 0.9360 0.9439
KITTI 06 0.9870 0.9533 0.9926
10 ' e —
—<— ASE(SIFT) —<— ASE(SIFT)
» ASE(SRD) » ASE(SRD)
—— ASE(SIFT) + ASE(SRD) —<— ASE(SIFT) + ASE(SRD)
i ] L o o % P O o o
(@) (b)

Fig. 10.  Precision—recall curves of PR using the fused and individual
descriptors on KITTI 05 and 06 sequences. (a) KITTI 05. (b) KITTI 06.

E. Evaluation on Fusion

In this section, a simple fusion experiment is carried out.
First, SIFTs and SRDs are extracted from synchronized images
and LiDAR data, respectively. Then, ASE is utilized to
aggregate them into global descriptors. Next, these two types
of descriptors are cascaded into a single global descriptor for
environment representation. Finally, PR is performed using
the cascaded descriptors on KITTI 05 and 06 sequences. The
precision—recall curves are shown in Fig. 10, and the maximum
F1-scores are listed in Table VIII. The results demonstrate
a slight improvement in the fused descriptor, indicating the
potential of the ASE-based PR framework for multisensor
fusion. To further improve the performance of multisensor
fusion, a deeper level of fusion mechanism is required in the
future.

VI. CONCLUSION

In this article, ASE was proposed for aggregating a set of
features into feature vectors with low dimensions. First, input
features have been preprocessed and then fed into the root
node of the ASE tree. Next, weights have been calculated
by probability densities of SD-GMMs in the ASE tree node
to generate aggregated vectors. Meanwhile, an ASE-based PR
framework has been proposed, in which local descriptors have
been extracted from sensor data (e.g., images or LiDAR data),
and then aggregated as global descriptors for representing
environment. In addition, a hierarchical matching strategy has
been proposed for retrieving similar descriptors to accomplish
PR. The proposed framework for PR has been compared with
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the state-of-the-art methods on the public dataset and in real-
world scenes, which demonstrates its good performances on
both accuracy and efficiency in various situations.

Compared with SE, ASE calculates the weights according to
the distribution of features in subdimensional intervals instead
of every single dimension, which makes ASE extensible to
any dimension of input features. Moreover, the proposed
framework for PR is theoretically independent of the sensor
type as well as the specific method of local descriptor
extraction. Furthermore, as a generic feature aggregation
method, ASE is also suitable for global localization and loop
closure detection in SLAM.

In future work, we would like to use ASE to aggregate
local descriptors extracted from different types of sensors in
a unified framework to accomplish deep fusion of multimodal
sensor data, to further improve the accuracy and robustness
of PR.
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